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—— Abstract

We investigate the closure properties of read-once oblivious Algebraic Branching Programs (roABPs)
under various natural algebraic operations and prove the following.

Non-closure under factoring: There is a sequence of explicit polynomials (fn(Z1,...,Zn))n

that have poly(n)-sized roABPs such that some irreducible factor of f, requires roABPs of

superpolynomial size in any order.

Non-closure under powering: There is a sequence of polynomials (fn(z1,...,%n))n With

poly(n)-sized roABPs such that any super-constant power of f, does not have roABPs of

polynomial size in any order (and f;; requires exponential size in any order).

Non-closure under symmetric operations: There are symmetric polynomials

(fn(e1,...,en))n that have roABPs of polynomial size such that fn(z1,...,2,.) do not have

roABPs of subexponential size. (Here, e1,...,e, denote the elementary symmetric polynomials

in n variables.)
These results should be viewed in light of known results on models such as algebraic circuits, (general)
algebraic branching programs, formulas and constant-depth circuits, all of which are known to be
closed under these operations.

To prove non-closure under factoring, we construct hard polynomials based on expander graphs
using gadgets that lift their hardness from sparse polynomials to roABPs. For symmetric composi-
tions, we show that the circulant polynomial requires roABPs of exponential size in every variable
order.
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1 Introduction

Given any computational model, it is natural to study the closure properties of the model with
respect to simple operations. In Boolean complexity, these simple operations typically take
the form of Boolean operations such as union, intersection, complement etc. In the setting of
algebraic complezity, the object of computation is a multivariate polynomial f € Flxy, ..., z,].
Here, it is intuitive to consider closure properties under algebraic operations.

In this paper, we study the closure properties of a very well studied model of algebraic
computation, namely read-once oblivious Algebraic Branching programs (roABPs, see defin-
ition 6). The interest in this model stems from the fact that it is both expressive enough
to capture many natural algorithmic paradigms while at the same time possible to analyze
using standard “complexity measures” [44].

In particular, roABPs can efficiently compute several polynomials of interest, including
elementary symmetric polynomials and iterated matrix multiplication®, the latter being
provably hard to compute for constant-depth circuits [40, 6, 43]. In addition, roABPs
subsume well-studied models such as sparse polynomials, set-multilinear and diagonal depth-
3 circuits [38], as well as polynomials with low partial derivative dimension [9]. On the other
hand, this is also one of the few models where we have a perfect characterization of the
complexity of any given polynomial (in the form of the rank of an associated matrix) and
where we also have a perfect understanding of border complexity [25]. As a consequence,
this model has played a central role in research on lower bounds, polynomial identity testing
algorithms and “debordering” results [21, 22, 14].

We study the closure properties of this model under basic algebraic operations such as
factorization, powering, and inversion under composition with an important algebraic map
(the elementary symmetric polynomial map). Apart from being natural questions about
any computational model, such investigations have played a vital role in understanding
hardness-randomness tradeoffs [35, 23, 17, 10] and the complexity of basic algebraic problems
such as the Resultant and GCD [5, 11] in other algebraic models.

1.1 Main Results
In contrast with what is known for other models, our results are mostly negative. Specifically,
we show the following.

roABP factor non-closure

Our first main result shows that there are explicit polynomial sequences that have small
roABPs but with an irreducible factor that has roABP complexity super-polynomial in n.
Specifically, we prove roABP complexity lower bound for a root, which is an irreducible factor
of the form z,, — f(x1,...,2n—1), even when the roABP is allowed to scan the variables in
any order. The formal statement is as follows.

! This does not imply any completeness result as roABP is not closed under projection.
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» Theorem 1 (roABP factor non-closure). The following holds over any field. Let n € N be a
parameter and d > n. There exists an n-variate polynomial f of degree d computable by an
roABP of width w = 29 such that one of its (irreducible) factors g requires an roABP of
width w18 in every variable order.

Note that, an roABP computing an n-variate polynomial by definition has only n layers.
Hence, the size and the width of an roABP are polynomially related. Secondly, the size and
width parameters in the theorem above are not polynomial in the number of variables, but
they can be easily made polynomial by padding with some additional “dummy” variables. In
particular, one should think of n above as logarithmic in the number of “actual” variables
and d as a growing parameter, up to a polynomial in the number of variables.

This is in contrast to other algebraic models such as algebraic circuits [36, 37], branching
programs [52], formulas and constant-depth circuits [10], all of which satisfy the property
that factors of a polynomial f have complexity comparable to that of f. An exception to
this rule is the family of sparse polynomials [57], and our construction is based on “lifting’
this example to the setting of roABP.

Y

roABP complexity of Symmetric Composition

We study an analogue of the result of Bldser and Jindal [16] for roABP. More specifically, a
classical result in the theory of symmetric functions says that any symmetric polynomial?
fsym(21,-..,2,) can be written as a unique polynomial combination f of the elementary
symmetric polynomials ESym}L, ..., ESym}, where ESyme is the n-variate elementary sym-
metric polynomial of degree d. Looking for a computational analogue of this theorem, Lipton
and Regan [41], asked: what is the complexity of feym vis-a-vis that of f?

Bléser and Jindal [16] showed that the complexity of f and fsym are polynomially related
in the algebraic circuit model. Recently, the work of Bhattacharjee, Kumar, Rai, Ramanathan,
Saptharishi and Saraf [11] extended this result to formulas and constant-depth circuits to
show that fundamental computations such as GCD, resultants and discriminants have efficient
constant-depth circuits in any characteristic. This generalizes a similar result of Andrews
and Wigderson [5] in characteristic 0.

We show in this paper that the roABP complexity of a polynomial f and its symmetric
counterpart fom can differ significantly. Taking foym = Y q_o ESym® (2%, ... zk), we can
show that feym is easy but f is exponentially hard.

» Theorem 2. The following holds over fields of characteristic zero. Let n € N be a
parameter. There exists an n-variate polynomial f such that the symmetric polynomial
foym = f(ESymi“ ..., ESym?) is computable by an roABP of constant width in every variable
order, but any roABP computing f in any variable order must have width 2.

In the other direction, our next result shows that even if a polynomial f is easy to
compute by roABP, its symmetric counterpart fom can still be hard for roABP — once again
in sharp contrast to the known results for circuits, formulas, and constant-depth circuits.
Specifically, the lower bound for a power of the elementary symmetric polynomial yields an
example where f is easy but fsym is exponentially hard.?

2 A polynomial is symmetric if it is invariant under any permutation of its variables.
3 This is an especially strong contrast to the other models where it is trivial to show that if f is easy,
then so is fsym-
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» Theorem 3. The following holds over fields of characteristic zero. Letn € N be a parameter.
There exists an n-variate polynomial f computable by an roABP of constant width such that
its respective symmetric polynomial foym = f(ESym:l7 ..., ESym?) requires an roABP of width
29%") in every variable order.

roABP non-closure corollaries

We also investigate the power of roABPs in relation to powering an efficiently computable
polynomial. It is well-known that constant powers of such polynomials also have small roABPs
(see e.g. [4, Lemma 2.5]). However, we show that for larger powers, a superpolynomial blow-up
in width is unavoidable.

» Corollary 4 (roABP powering non-closure). The following holds over fields of characteristic
zero. There exists an n-variate polynomial f computable by an roABP of width O(n) such
that for any d, any roABP computing f¢ requires width at least (d:72/2) in every variable
order.

» Remark. We give two example polynomials to prove the hardness of powering for roABP.
The first is the elementary symmetric polynomial (this lower bound will also prove Theorem 3)
and the second is a quadratic polynomial inspired by the proof of Theorem 1.

Another corollary of Theorem 3 is that computing the resultant and the discriminant is
hard for roABP.

» Corollary 5 (roABP discriminant non-closure). The following holds over fields of character-
istic zero. For all n, there exists an n-variate polynomial f(x,y) computable by an roABP of
width O(n) such that any roABP computing the discriminant Disc,(f) requires width at least
22%(") in every variable order.

» Remark. As an immediate consequence of the corollary above, we get that roABP is not
closed under taking resultants.

Related Work

There have been many lines of investigation into roABPs from the point of view of lower
bounds [44, 38, 4], PIT algorithms [46, 12, 2, 31, 27, 26, 4, 2, 32, 8, 49], border complexity [21,
22, 14, 13], algebraic meta-complexity [7, 9] and so on.

Our work is closely related to that of Kayal, Nair, and Saha [38], who proved separations
between the power of roABPs and multilinear depth-3 circuits. Non-closure results of a
similar flavour to ours have also been proved by Saha and Thankey [49, Appendix E.1]. They
construct explicit families of polynomials that require roABP of exponential size, but arise
from applying invertible linear transformations to sparse polynomials f that have linear
roABP complexity. Some of their ideas, such as those involving the use of expander graphs,
also appear in our work.

Similar separations between roABPs and other models (such as read-twice ABPs) were
also addressed in the work of Anderson, Forbes, Saptharishi, Shpilka and Volk [4]. We
re-prove a result from this work separating depth-2 algebraic circuits (products of linear
polynomials) from roABPs in order to understand the roABP complexity of some explicit
symmetric functions. Our lower bound is proved for the specific case of the determinant of
a Clirculant matriz, which is a naturally occurring mathematical object and hence may be
independently interesting.
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1.2 Proof Techniques

The main technique for understanding the roABP complexity of a polynomial is a charac-
terization due to Nisan [44], who showed that the roABP complexity of a polynomial f (or
more precisely the width of the smallest roABP computing f) in a given order is captured
by the ranks of certain matrices related to f, also known as the evaluation dimension of f
(formally defined in Definition 11). We also heavily rely on this notion in our work.

Factor non-closure

To construct our examples of polynomials that are efficiently computable by roABPs but
hard to factor, we start with an analogous construction for a weaker setting, that of sparse
polynomials. The following is a well-known construction due to [57, Example 5.1].

n n

flze, ... x,) = H(;vf—l):H(:Ei—l)-H(1+xi+-~-+$?71)-

i=1 =1 =1

g(x1,0Tn)

Note that the polynomial f has 2" monomials while its factor g has d™ monomials. This
thus yields an example of a polynomial whose factors have many more monomials than the
polynomial itself.

We would like to extend this to the setting of roABP. Unfortunately, the example above
does not work as is, as the polynomial g is a product of univariate polynomials and hence
has a small roABP. Our idea is to “lift” this sparsity lower bound to an roABP lower bound.

The basic idea of lifting, which has proven powerful in the area of Boolean complexity [20]
and also Algebraic Proof complexity [28], is to start with a function f that is hard for a
simpler computational model (in this case sparse polynomials) and convert it to a function g
that is difficult for a much more powerful model by replacing the variables of f by functions
(typically called “gadgets”) in a small number of new variables to obtain g. A version of
this idea can be used to lift degree lower bounds on the multilinear representation for some
functions to lower bounds for algebraic proof systems based on roABPs [28].

Inspired by [28], we replace the variables of the polynomial f by quadratic multilinear
monomials in a new set of variables y1,...,y, where m = Q(n). We can associate this
replacement with an undirected graph G on m vertices and n edges. We show that, as long
as G is a sufficiently good constant-degree expander, the corresponding “lifted” polynomials
fo and gg are easy and hard respectively for roABPs with similar parameters to the case of
sparse polynomials.

The crucial property of expander graphs that allows us to prove a lower bound on gg
is the Expander Mixing lemma. It can be used to show that given any balanced partition
of the vertices of G, there is a large induced matching between the two sets in the parts.
This allows us to find a large identity matrix as a submatrix of the evaluation matrix of gg,
leading to strong bounds on its evaluation dimension.

The complexity of powering

We give two examples to demonstrate that roABPs are not closed under powering.

The first is a quadratic polynomial g whose monomials again correspond to a constant-
degree expander graph as in the previous result. The Expander Mixing lemma can again be
used to argue that large powers of g have large evaluation dimension.

9:5
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The second example is just an elementary symmetric polynomial. Symmetric polynomials
are particularly natural to study in the setting of roABPs, since the polynomials have the
same complexity under any variable ordering. In particular, studying the complexity of a
symmetric polynomial turns into understanding the ranks of combinatorially defined matrices.
In the setting of a power of the elementary symmetric polynomial, we are able to show that
this matrix has large rank.

No Blaser-Jindal type results for roABPs

Already the example of the elementary symmetric polynomial above shows that for the
simple polynomial f(y1,...,y,) = y¢, the symmetric polynomial f(ESym?, ... ESym") is
hard to compute for roABPs.

To prove a converse result, we use the symmetric polynomial
fsym = Do ESyme(x’f,...,fo). In this case, we need to understand the complex-
ity of the polynomial f (such as f(ESyml, ... ESym”) = fsym). It turns out that the
polynomial f in this case is completely understood [1] and is closely related to the
determinant of the Circulant matrix. To prove the lower bound, we prove an roABP lower

bound on this determinant, which we believe is independently interesting.

Outline

We begin with preliminaries in Section 2. Section 3 contains the proof of Theorem 1. In
Section 4, we prove Theorem 2 and Theorem 3. Finally, in Section 5, we prove all the
corollaries.

2 Notations and Preliminaries

Throughout the paper, we will use a growing parameter n > 0 to denote the number of
variables in the polynomial. Let @ = (z1,...,2,) be the set of indeterminates. A monomial of
the form x7' - - - & is denoted as x©, where e = (eq, ..., e,) € N”. The degree of a monomial
x¢ is defined as deg(x®) :=e; + - -- + e,. The degree of a polynomial f € Flxy,...,z,] is
defined as the maximum degree of its constituent monomials. We use coefze(f) to denote

the coefficient of the monomial € in f.

2.1 Read-Once Oblivious Algebraic Branching Programs (roABP)

Our model of interest arises as a natural restriction of Algebraic Branching Programs (ABPs),
which we describe next. An Algebraic Branching Program (ABP) is a layered and directed
graph with a source vertex s and a sink vertex ¢. All edges connect vertices from layer i to
i+ 1. Further, the edges are labeled with affine polynomials over the underlying field F. For
every path + from s to ¢, wt(7) is the product of labels on the edges of the path 7. The
polynomial computed by the ABP is defined as

F= > wi(),

path vyis~t

The depth of an ABP is defined as the number of layers in the graph, and the width is
the maximum number of nodes in a layer across the graph. The number of vertices used in
the graph is the size of the ABP. The roABP model is a restriction of ABPs, which we define
below.
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» Definition 6 (roABP). Let n € N be arbitrary and fix a permutation 7 : [n] — [n]. An
roABP in the order m computing an n-variate polynomial f(x) is an ABP where in the i-th
layer the edge labels are univariate polynomials over T ;).

The size of an roABP is defined as the number of vertices it contains, and the width is
defined as the maximum number of vertices in any layer.

In a foundational work, Nisan [44] characterized the complexity of an ABP in the non-
commutative setting with the rank of certain matrices. Remarkably, the characterization
extends to roABP as well. We define the relevant matrix to formally state this characterization.

» Definition 7 (Nisan Matrix). Consider an n-variate polynomial f(x) and a variable partition
YUZ={x1,...,2,}. The Nisan matrix of f with respect to Y, Z, denoted as My z(f), is
the matriz whose rows are indexed by monomials my over Y and whose columns are indexed
by monomials mz over Z. Its entry at (my,mz) is defined as

MKZ(f) |:my, mZ:| = Coefmy-mz (f)

Historically, the Nisan Matrix has also been referred to as the coefficient matrix or
partial derivative matrix. The width of an roABP computing a polynomial f can be exactly
characterized by the rank of the Nisan matrix of f [29, Lemma 4.5.8].

» Theorem 8 (roABP characterization). Let f(x) be an n-variate polynomial, and fix a

permutation m on variables. For each i € [n], consider the partition Y; = {m(x1),...,7(z;)}
and Z; = {m(xi31),...,7(xn)}, and let My, z,(f) denote the corresponding Nisan matric.

The width of the smallest roABP computing f in the order w is exactly
max; e, rank(My, z,(f)). Moreover, the size of the smallest roABP is ezactly

Zie[n] rank(My,,z, ().

We next prove a lemma to demonstrate the usefulness of the roABP characterization,
which will be used in our later proofs.

» Observation 9. Consider an n-variate polynomial as follows

f = H (1+xi+x?+...—|—xf—1).

1€[n]

Let Y ={y1,....yn} and Z = {21,..., 2, } be disjoint set of variables. Define a 2n-variate
polynomial f = f(y121,...,Yn2n). The rank of the Nisan matriz My z(f) is d".

» Remark 10. Note that f itself can be computed by a constant width roABP in any order.

Proof. Observe that for every monomial my over Y such that each variable has degree
at most d — 1 in my, there is a unique monomial mz of the same form over Z such that
coefrmy .my, (f) is not zero, and reciprocally, for any monomial my over Z there is a unique
monomial my . Consequently, the Nisan matrix My, Z(f) is a permutation matrix, and hence

has rank d™. |

Evaluation Dimension

An alternative perspective on the Nisan matrix was introduced by Saptharishi [27, Section 6].

As we will see in our proofs, this viewpoint often makes it easier to reason about roABP
complexity.

9:7
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» Definition 11 (Evaluation Dimension). Let f(x) be an n-variate polynomial on X =
{z1,...,2n} over a field F, and a subset of variables Y and Z == X\Y. The evaluation
dimension of f with respect to the partition Y U Z is defined as

evalDimy. z(f) = rank({f(y,a) | aer}).

Over large fields, the evaluation dimension is equivalent to the rank of the Nisan matrix.
However, this equivalence does not hold when restricting the evaluation points, e.g. to the
Boolean cube. Nevertheless, the evaluation dimension is always a lower bound of the rank of
the Nisan matrix ([50, Lemma 11.9], and see also [29, Corollary 4.5.12]).

» Theorem 12. Let f(x) be an n-variate polynomial, and fiz a permutation ™ on variables.
For a variable partition Y U Z with Y = {xrqy,..., T} and Z = {Tr(i11), .-+, Ta(n)}, aNY
roABP that computed f in the order m has width at least evalDimy z(f).

Conversely, if the field F is infinite, there is a roABP computing f of width evalDimy. z(f).

2.2 Elementary Symmetric Polynomials

Symmetric polynomials are those that are invariant under any permutation of the variables.
A fundamental and well-studied family within symmetric polynomials is the elementary
symmetric polynomials, which are defined as follows.

» Definition 13 (Elementary Symmetric Polynomial). The elementary symmetric polynomial
of degree d, on variables x1,...,xy, is defined as

ESym? (z1,...,2,) = Z Tiy - Ty

1<iy <...<ig<n

Whenever clear from the context, we write eq == ESymfll to denote the degree-d elementary
symmetric polynomial in n variables. A more convenient way to define these polynomials is
via the following generating functions:

[T @+ai-t) =D ESymi(z)-t'. (1)
=0

i€[n]

These polynomials are called elementary because they form the fundamental building
blocks for all symmetric polynomials. For any n-variate polynomial f(x), we define the
n-variate symmetric polynomial foym == f(e1,...,en).

» Theorem 14 (Fundamental Theorem of Symmetric Polynomials). Let R be any commutative
ring, and let g € R[xq,...,x,] be a symmetric polynomial. Then there exists a unique
polynomial f € R[y1,...,yn] such that

g = foym = f(ESym,lw...,ESymZ).

We refer to [39, Theorem IV.6.1] for the proof of Fundamental Theorem of Symmetric
Polynomials (see also [15]). We will also need the following variable partitioning lemma,
which is a special case of [42, Theorem 1.1].

» Lemma 15 (ESym Variable Partition). Let Y U Z be a partition of the variables. Then,

d
ESym|Y,_,Z‘ Y, Z2) Z (ESymm ESyle‘ (Z))
=0
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Proof. Let Y = {y1,...,ym} and Z = {z1,..., 2z, }. Then using Equation 1 we can write,

> Esymi, (V) ¢ = J[ (14D
=0 =1
i ESym! (Z) -t = ﬁ(l-l—zi-t)

Il
N

=0 i

Taking the product of the two polynomials above, and comparing the coefficients of t¢ on
both sides proves the lemma. |

As a direct consequence of extracting the coefficient of % from Equation 1, Shpilka and
Wigderson [51] (crediting Ben-Or) presented the following identity for elementary symmetric
polynomials, which yields a near-optimal roABP of width O(n) computing ESymZ in any
variable order:

» Proposition 16 ([51, Theorem 5.1]). For any n € N and d < n, let w be a primitive n-th
root of unity. There exist By, ..., n—1 € C such that

ESymd (x1,...,2,) = Z Bi (14w (T4+wz) - (1+wz,).

0<j<n
» Remark 17. ESyme can also be computed by a provably tight roABP of width min(d +

1,n —d+ 1) in any variable order using only coefficients 0 and 1 (see [45, Construction 1.2]).

2.3 Resultant and Discriminant

We recall the definitions and properties of resultant and discriminant from factorization
literature. We encourage readers to refer to [56, Chapter 6] for a more detailed textbook
treatment of these concepts.

» Definition 18 (Resultant). Consider two n-variate polynomials f, g € Fx][y] as follows:
dy ) do )
f=Y f@ -y and g =3 g@)-y.
=0 =0

Define the Sylvester matrix of f and g as the following (d1 + d2) x (d1 + d2) matriz:

fd1 9d,
fdrl fd1 9dy—1 9d,
: fdlfl "' ; gdgfl
: fd1 gdg
fo : fai-1 9o : 9dy—1
fo ; 90 ' :
Jo 90

Then the resultant of the two polynomials with respect to y is defined as the determinant of
the Sylvester matrix as:

Res@!(fv g) = Det(Sy(f, g))

9:9
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The resultant of two polynomials is non-zero if and only if their ged is 1. A well-known
case of resultant relevant for factoring algorithms is the discriminant.

» Definition 19 (Discriminant). Consider a n-variate polynomial f. The discriminant with
respect to y of f is defined as the resultant, with respect to y, of f and its y-derivative, i.e.,

Discy(f) = Resy(f,dyf).

The following well-known observation will be useful in the analyses of complexity of the
resultant and the discriminant.

> Observation 20 (see [19, Chapter 3]). Let f = [];c,(y — i) and g = [, (v — Bs) be
two univariate polynomials. Then the resultant of f and g with respect to y is given by

Resy(f,9) = [] 9()-

1€[n]

3 roABP Factor Non-Closure

To prove Theorem 1, we need a polynomial of low roABP complexity, that has a factor of
high roABP complexity. We will use explicit expander graphs for this purpose. The only
property we require from the expander graph is that, for any sufficiently large partition of
its vertex set into two parts, it contains a large induced matching between the two parts.

» Lemma 21 (Induced Matching Lemma). For every n € N there exists a constant degree
graph G,, = (V, E) on n vertices such that the following holds: for any partition (S,T) of V
with |S| = en and |T| = (1 — e)n where e € 5, 2], the graph contains Q(n) edges between S
and T that form an induced matching.

Proof Sketch. There exists an absolute constant § € (0, 1) such that, for any k € N with
k > 1, we can construct explicit k-regular expander graphs G,, = (V, E) whose second-largest
eigenvalue is at most k%; see [47].

When £ is chosen to be sufficiently large such that the second-largest eigenvalue of G,, is
strictly smaller than k/3, then the lemma follows as an easy consequence of the Expander
Mixing Lemma [3] (see also [33, Lemma 2.5]). See, for example, [34, Claim 4]. <

Define an n-variate polynomial Pg associated with constant degree graph G,, = (V, E)
guaranteed by Lemma 21 as follows:

PG = H ((mia:j)d — 1) . (2)
(i,J)EE

Since the degree of the graph is constant, the sparsity of Pg is 2/ = 20" —=: . Therefore,
Pg can be computed by an roABP of width w in every variable order. To prove the hardness
of its factor, consider the following polynomial Qg:

0 = I (1+(xixj)+(:ci:cj)2+...+(:xixj)d71)- ®)
(i,J)EE

It is well known that (1 +x + 2%+ ...+ 297 1)(z — 1) = 2¢ — 1. Using the identity, we
immediately obtain

PG = Qg~ H (xil‘j*l).

(i.4)eE
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» Lemma 22. The polynomial Qg defined in Equation 3 requires an roABP of width d*(™)
in every variable order.

Proof. Let 7 be any variable order on the variables X = {x1,...,z,}, and consider the
partition Y = {z,1),...,Trm/2)} and Z = X \ Y.

Let Y and Z also denote the partition of vertices of G,,. Then from Lemma 21, we know
there exists an induced matching M between Y and Z of size Q(n). Define

= H <1+(l‘ix]’)—F(1‘i$j)2+--~+(xixj)d_1)
(3,5)EM

= (1 + (yizi) + (Wiz) + o+ (yizi)dfl) ;
]

i€t

where for every i € [t], y; is a variable in Y and z; is a variable in Z, and ¢t = Q(n). Here we
have used the fact that M is an induced matching. In particular, fis obtained from Qg by
setting to zero the variables which are not in the matching M. Hence, the rank of the Nisan
matrix can only decrease. Finally, by Observation 9,

rank (My z(Qg)) > rank (MY,Z (f)) > g,
We obtain the claimed lower bound for width of roABP computing Q¢ by Theorem 8. <«

We will now use the discussion so far to give the complete proof of the factor non-closure
result.

» Theorem 1 (roABP factor non-closure). The following holds over any field. Let n € N be a
parameter and d > n. There exists an n-variate polynomial f of degree d computable by an
roABP of width w := 29 such that one of its (irreducible) factors g requires an roABP of
width w1°€D in every variable order.

Proof. Consider an n-variate polynomial ¢ := Q¢,_, + 2, where z is an auxiliary variable
and (g, _, is defined as in Equation 3 using a constant-degree graph G,,_;1. We then define

f::g~ H (mi-mj—l):Pg—&-z- H (mi-xj—l).

(i.j)EE (i.j)€E

As argued after Equation 2, both Pg and H(i j)eE(zi -x; — 1) have sparsity 20(n) and

hence we can compute them by an roABP of width w = 29 in every variable order.

Therefore, f itself admits an roABP of width w in every variable order.

Observe that g is an irreducible polynomial because it is linear in the auxiliary variable z.4
Further, by Lemma 22, any roABP computing Q¢ + z must have width at least d(™) in
every variable order. Since d > n, the claimed width lower bound for roABP computing g
follows. <

4 roABP Complexity of Symmetric Polynomials

In the following two sections we prove Theorem 2 and Theorem 3 along with their corollaries.

4 See [57, Example 5.1] where the hardness is lifted to irreducible factor by considering g = Qg + n.
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4.1 fom is easy, but f is hard

In this section, we work over fields of characteristic zero. For the proof of Theorem 2, we
consider foym = 5o ESym? (¥, ..., %) for a suitable choice of k € [n] to be fixed later.
Let us consider the polynomial

k—1
g(ylv-'-7ynat7207"'7zk—1) = H 1+Zy7(tzj)z
j=0 i€[n]

The polynomial g is symmetric in the variables zg, ..., zx—1. So by Theorem 14, there exists
a polynomial g € Z[y1,...,Yn,t, 20, .., 2k—1] such that g(y,t,2z) = gy, t,e1(2),...,ex(2)).
Notice that if w is a k-th primitive root of the unity, Equation 1 implies

{ei(wo,...,wk_l) =0 for1<i<k,
1

ern(w ..., Wk 1) =1.

Let us define

flyr-un) = 9(y,1,0,...,0,1) € Z[y]. (4)

The previous paragraph ensures that for any k-th primitive root of the unity w, we have

k—1
f(yla"'vyn) = H 1+Zy’twjl . (5)
7=0 1€[n]

The following lemma shows that f is indeed the unique polynomial inducing the symmetric
polynomial 377 ESym& (z¥, ..., 2%). The following is an argument in [1], which we reproduce
here for completeness.

» Lemma 23 (Circulant Polynomial). For any n € N and odd positive integer k < n,
n
fom(@) = fler(@),...,en(m)) = > ESymy (af,... af).
d=0

Proof. Let w be a k-th primitive root of the unity. Using the factorization identity
(1—tk) = [T;(1- w’ - t) together with Equation 1 we obtain the following:

—
—
|
K
—
L
N~—
=
S~—
I
<
Il : 3

k—1
H <1+wj-$i't)
1 =0

n
(1 + ei@) - (W t)i> .
i=1
By Equation 5 and instantiating ¢ by 1, we obtain

H (1+2f) = fle(z),... en(x)). <

i€[n]

>
|

1
0

<.
I

We call the polynomial f a circulant polynomial because it is closely related to the
determinant of a Circulant matrix.®

In the following lemma, we show that the polynomial f is hard for roABP in every variable
order over any field F of characteristic 0.

5 Specifically, in the case k = n, the homogeneous component of degree k of the polynomial f is exactly
the determinant of the circulant matrix of first row (z1,...,zn).
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» Lemma 24. For any prime k with 2 < k < n, the n-variate polynomial f defined in

Equation 4 requires roABP width at least 25=1/2 in any variable order.

Proof. By instantiating a variable, the roABP width can only decrease. So it is sufficient to
consider f/(yh cee 7yk) = f(yla s 7yk703 ceey 0)

By the standard evaluation-dimension lower bound for roABP, it suffices to show
the following. For any variable order m and the variable partition (U,V) where U =

{yﬂ(l)’ T yﬂ((kfl)/2)} and V = {2/7r((1c71)/2+1)7 .- ,y,r(k)} we have
evalDimu,y (f') = rank ({f'(w,a) | a € FVI}) > 290,

Re-writing Equation 5 in terms of variable partition (U, V'), we have

k—1

fmmzll@mwaw+0, ©)

Jj=0

where £;(u) and ;(v) are linear polynomials in U and V', respectively.

Arranging the coefficients in the linear forms {/;(u) + ¢}(v)}; as the rows of a k x k
matrix yields a matrix M whose (j,i)-th entry is w’ @ for j € {0,...,k — 1} and i € [K].
Note that M can be obtained from the standard k x k DFT matrix (w’"); ;e by permuting
columns.

i€ [k]
MB Y1
My
k—1 —1
=z Xz
] 0,....k—1
j€A{o,..., } 1 i
2 2
Yk
A) U [A) V 4

Figure 1 The matrix M with (j,7)-th entry W™ corresponding to the natural variable order.
The highlighted submatrices M4 and Mp are used in the analysis of evaluation dimension.

When k is prime, Chebotarev’s theorem on roots of unity [53] states that every square
submatrix of the DFT matrix (and hence also M) is nonsingular; see also [54, Lemma 1.3]
and [30]. Since |U| = (k —1)/2, we can fix a subset A C {0,...,k — 1} of size (k —1)/2 such
that the set {£;(u)};ca corresponds to a square submatrix M4 of M. Such a submatrix
M, is non-singular due to Chebotarev’s theorem. Consequently, the set {/;(u)}jeca is
linearly independent. We can assume that ¢;(u) = wu; for ¢ € A, since an invertible
linear transformation on the variables in U does not change the evaluation dimension
evalDimy, v (f').

Consider any B C A. By Chebotarev’s theorem, the submatrix Mp with rows indexed
by B and columns vs,...,v|g41 is invertible (the choice |[A| = (k — 1)/2 ensures that
V' contains enough variables). So, for any b € F, there is a unique point Sp; € FIBI
such that for any j in B, E;(b, BBp,0,...,0) +1 = 0. Similarly, for any other row index
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7€0,...,k—1}\ B, there exists a unique point V5 € FIBI+1 such that for any j in BU{j},
we have // (550, ,0)+1=0. Tt follows that 7V is of the form (b]v, BB ) for a particular

b-€F.
Since F is infinite, we can choose b in F outside of {lr; | 7€{0,...;k—1}\ B}7 and
define ap == (b, 8 5,0,...,0). For any j in {0,...,k —1}:

li(ap) +1=0 < jeB.

Consequently f'(u,ap) = (HJEB uj> . (Hje[k]\B(gj(U) + cB,j)> where the (c ;) ¢n
are non-zero constants. Since for each B, f’(u,ap) has a distinct lowest degree monomial
(HJEB uj>, the set {f'(u,ap) | B C A} is linearly independent. Therefore,

evalDimU’V(f’)) > dim {f'(u,ap) | BC A} — 9(k=1)/2

By the evaluation-dimension lower bound of Theorem 12, any roABP computing f (in any
order) must have width at least 2*=1)/2, <

» Remark 25. A close look at the above proof reveals that the lower bound also applies to
the circulant polynomial Hf;é (>, yiw™) which is exactly the determinant of the circulant
matrix.

The lower bound established in Lemma 24 serves as the key technical ingredient needed
to prove Theorem 2.

» Theorem 2. The following holds over fields of characteristic zero. Let n € N be a
parameter. There exists an n-variate polynomial f such that the symmetric polynomial
fsym == f(ESym:L7 ..., ESym}) is computable by an roABP of constant width in every variable
order, but any roABP computing f in any variable order must have width 22",

Proof. Fix k to be a prime number between n/2 and n. We consider the symmetric polynomial
foym =20 ESymz(x’f, ...,z¥). By applying Equation 1 with each x; replaced by x¥, we
obtain that fsym admits an roABP of constant width in every variable order. Moreover, by
Lemma 24, the width of any roABP computing f is at least 2(F=1)/2 = 22(n) <

4.2 fis easy, but fy,, is hard

To prove Theorem 3, it suffices to show the following technical lemma, which shows that taking
powers of elementary symmetric polynomials is hard for roABPs. This lemma also implies
Corollary 4 from the introduction. In Subsection 5.1, we will present an alternative proof of
Theorem 3 using a quadratic polynomial based on graph-based polynomial from Section 3.

d
» Lemma 26 (Powers of ESym). Let k < n/2. Any roABP computing (ESymﬁ) in any
vartable order requires width at least (kzd).
» Theorem 3. The following holds over fields of characteristic zero. Letn € N be a parameter.
There exists an n-variate polynomial f computable by an roABP of constant width such that
its respective symmetric polynomial fom = f(ESymp, ..., ESym!) requires an roABP of width
22%(") in every variable order.
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Proof. Let k = |n/2]. Consider the polynomial f(z1,...,x,) = zk. It is easy to see that
f can be computed by an roABP of constant width. However, by Lemma 26, any roABP
computing the symmetrisation

k
foym = f( ESym}l, ...,ESym} ) = (ESymﬁ)
must have width at least

() ) =), «

» Remark 27. We recall that ESym,LL"/% can be expressed as a sum of n many products of
univariate polynomials (see Proposition 16). Consequently, using the multinomial theorem, it
follows that (ESymL™/2))[n/2] can be expressed as a sum of at most O(2!*") many products
of univariate polynomials. Hence, the bound we obtain in Theorem 3 is almost optimal.

Proof of Lemma 26. Assume that (ej)* is computed by an roABP of width w and variable
order 7. Let Y = {Zr1),...,Tra)} and Z = X \ 'Y be a partition of the variables X. By
Theorem 12, we know that

w > evalDimy z ((ek)d) .

Using Lemma 15, and the multinomial theorem, we can write the powers of the elementary
symmetric polynomial e as follows:

(ex(X))" = (tz: et(Y)-ek_t(Z)>d
_ t0+.t§)k—d <t0’.‘.i.’tk) <630(Y)...e§;(y)> . (62°_O(Z)~~-e§j_k(2)>. )

To argue about the evaluation dimension of (e (X))?, we will need the following elementary
fact from linear algebra.

» Proposition 28. If a matriv M = Y._, u;v] where {ui,...,u.} and {v1,...,v,} are
linearly independent sets of vectors, then M has rank exactly r.

To use the above fact, we note that the algebraic independence of the elementary
symmetric polynomials (a consequence of Theorem 14) implies that the sets

E={e0(Y)--- e (Y):to+-+ty =d} and E = {el> (Z)---el (Z) - to+---+t), = d}

are both linearly independent sets of polynomials (E can be obtained from E by just
changing the underlying variable). Further, each term on the right-hand side of Equation 7
(corresponding to a tuple (to,...,t;) summing to d) has an evaluation matrix that is the
outer product of the coefficient vectors of the corresponding polynomials in £ and E, scaled
by a suitable multinomial coefficient (which is non-zero because we have assumed that the
characteristic of the underlying field is 0). This implies that the evaluation matrix of (ej(X))?

has rank exactly the number of terms which is (*/9). <
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5 Non-closure corollaries for roABP

We will now give the proofs of corollaries stated in Subsection 1.1. We use observations
from the earlier sections to show that operations such as powering, computing resultant, and
discriminant can be hard for roABP.

5.1 Hardness of Powering: a second example

In this section, we give a second proof of (a slightly weaker form of) Corollary 4. Note that
we already proved this in the form of Lemma 26. By Proposition 16 and the following remark,
we know that ESyms3,, admits an roABP of width O(n) in any variable order. On the other
hand, any roABP that computes (ESymj, )% must have width at least (":d).

Inspired by the graph-based polynomial which was used to prove factor non-closure in
Section 3, we can even define a quadratic polynomial @) and prove that powering @ is hard
for this polynomial roABP. The lower bound we obtain is slightly weaker, but the example
is even simpler since @ is just a quadratic polynomial, as opposed to the high-degree and

high-sparsity elementary symmetric polynomial.

» Corollary 29 (Variant of Corollary 4). The following holds over fields of characteristic zero.
There exists an n-variate quadratic polynomial Q computable by an roABP of width O(n)
such that for any d, any roABP computing Q® requires width at least (d:rnm) in every variable
order where m = Q(n).

Proof. Let G = (V, E) be a constant degree graph on n vertices such that Lemma 21 holds.
Define the quadratic polynomial:

Qe = Y wm; 8)
(,5)€E

where variables x; correspond to the vertices of G. It is easy to observe that Q¢ can be
computed by an roABP of width |FE| = O(n) in any variable order. We will prove that any
roABP computing Q% must have large width.

Let 7 be any variable order on the variables X = {z1,...,z,}, and consider the partition
Y ={Zx1),-- s Tans2)} and Z = X \ Y. Let Y and Z also denote the partition of vertices
on G. By Lemma 21, there exists an induced matching M between Y and Z of size Q(n).
By renaming the variables if necessary we assume that the matching is between the vertices
corresponding to y; and z; where ¢ € [t] and t = Q(n).

Define the polynomial:

d d

éd: Z l’i‘ij = Zylzl

(i,5)EM i€lt]

In particular, de is obtained from Q% by setting to zero the variables which are not in the
matching M. Hence, the rank of the Nisan matrix corresponding to @ is a lower bound on
the evaluation dimension of @ w.r.t. the partition (Y, Z).

By construction, for every monomial my of degree exactly d over Y, there exists a unique
monomial my over Z such that the coefficient of my -myz in @ 4 is nonzero (cf. Observation 9).
Therefore,

t—1

rank (Myz(Q‘(i;)) > rank (Myz (@d)) > (d - 1).

Applying Theorem 8, we obtain the desired lower bound on the width of any roABP comput-
ing Q%. |
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5.2 Hardness of computing resultant and discriminant

We design a polynomial that is simple for roABP, but which turns out to be difficult for roABP
when one computes its discriminant. This, in turn, immediately implies that computing
resultant is also hard for roABP.

» Corollary 5 (roABP discriminant non-closure). The following holds over fields of character-
istic zero. For all n, there exists an n-variate polynomial f(x,y) computable by an roABP of
width O(n) such that any roABP computing the discriminant Disc,(f) requires width at least
292n) in every variable order.

Proof. Let g be an (n — 1)-variate polynomial to which the lower bound in Corollary 4 is
applicable. Fix any d = Q(n). Define

f=y"—g(x) .

Then we have 0,f = d - y?~! — g. Tt is easy to see that the roots of f are oy = 0 and
o = w' - gD for 1 <4 < d— 1, where w is a primitive (d — 1)-th root of unity. Here we
work over a suitable field extension of the base field F to ensure that we have an (d — 1)-th
root of unity.

The discriminant of f is defined as the resultant of f and 0, f with respect to y, i.e.,
Discy(f) = Resy(f, 9y f). Then using Observation 20 we can compute:

d—1 d—1
Disc, (f) = H Oyf(ei) = —g- H (d-=1)-g
i=0 i=1
= —(d—1)%"1g%

Thus, computing the discriminant of f amounts to powering the polynomial g, for which
we have the required lower bound by Corollary 4. The upper bound on the roABP complexity
of f follows from the one for g. <

6 Conclusions and Open Problems

In this work, we proved that a width-w roABP computes a polynomial whose irreducible
factor requires roABPs of width at least w'°8?, yielding a quasipolynomial separation. This
showed that roABPs are not closed under factoring (see Section 3). A natural next step is to
search for polynomials that exhibit an exponential separation between the roABP complexity
of a polynomial and that of its factor.

Our non-factor closure proof relied on the idea that polynomials that are hard for the
simpler sparse model but easy for roABPs can be transformed, using simple gadgets, into
polynomials that are hard even for roABPs. This raises an intriguing question about the
scope of such hardness lifting. Specifically, given a polynomial f(x) of sparsity s, can we
always lift using a gadget ¢ such that the composed polynomial f(¢ o x) requires an roABP
of size Q(s)?

One consequence of our study of graph-based polynomials and symmetric compositions is
the proof that powering is hard for roABPs (see Subsection 5.1). This naturally raises the
question in the other direction: does there exist a polynomial f := g¢ that is easy to compute
by an roABP, while g is hard for roABP? An affirmative answer would, once again, stand in
sharp contrast to other models such as circuits, algebraic branching programs, and formulas,
where low complexity of f leads to low complexity of g. Interestingly, the analogous question
for sparse polynomials was answered affirmatively for d = 2 in classical works by Rényi [48]
and Erdé8s [24], and was subsequently extended to arbitrary d in later works [55, 18].
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