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Abstract

We investigate the closure properties of read-once oblivious Algebraic Branching Programs
(roABPs) under various natural algebraic operations and prove the following.

• Non-closure under factoring: There is a sequence of explicit polynomials
( fn(x1, . . . , xn))n that have poly(n)-sized roABPs such that some irreducible factor of
fn does not have roABPs of superpolynomial size in any order.

• Non-closure under powering: There is a sequence of polynomials ( fn(x1, . . . , xn))n with
poly(n)-sized roABPs such that any super-constant power of fn does not have roABPs
of polynomial size in any order (and f n

n requires exponential size in any order).

• Non-closure under symmetric compositions: There are symmetric polynomials
( fn(e1, . . . , en))n that have roABPs of polynomial size such that fn(x1, . . . , xn) do not
have roABPs of subexponential size. (Here, e1, . . . , en denote the elementary symmetric
polynomials in n variables.)

These results should be viewed in light of known results on models such as algebraic circuits,
(general) algebraic branching programs, formulas and constant-depth circuits, all of which
are known to be closed under these operations.

To prove non-closure under factoring, we construct hard polynomials based on expander
graphs using gadgets that lift their hardness from sparse polynomials to roABPs. For sym-
metric compositions, we show that the circulant polynomial requires roABPs of exponential
size in every variable order.
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1 Introduction

Given any computational model, it is natural to study the closure properties of the model with

respect to simple operations. In Boolean complexity, these simple operations typically take the

form of Boolean operations such as union, intersection, complement etc. In the setting of algebraic
complexity, the object of computation is a multivariate polynomial f ∈ F[x1, . . . , xn]. Here, it is

intuitive to consider closure properties under algebraic operations.

In this paper, we study the closure properties of a very well studied model of algebraic

computation, namely read-once oblivious Algebraic Branching programs (roABPs). The interest in

this model stems from the fact that it is both expressive enough to capture many natural al-

gorithmic paradigms while at the same time possible to analyze using standard ‘complexity

measures’ [Nis91].

In particular, roABPs can efficiently compute several polynomials of interest, including el-

ementary symmetric polynomials and iterated matrix multiplication, the latter being provably

hard to compute for constant-depth circuits [BDS22; LST25; NW94]. In addition, roABPs sub-

sume well-studied models such as sparse polynomials, set-multilinear and diagonal depth-3

circuits [KNS20], as well as polynomials with large partial derivative dimension [BT24]. On the

other hand, this is also one of the few models where we have a perfect characterization of the

complexity of any given polynomial (in the form of the rank of an associated matrix) and where

we also have a perfect understanding of border complexity [For16]. As a consequence, this model

has played a central role in research on lower bounds, polynomial identity testing algorithms and

‘debordering’ results [Blä+20; DDS22; DS22].

We study the closure properties of this model under basic algebraic operations such as fac-

torization, powering, and inversion under composition with an important algebraic map (the el-

ementary symmetric polynomial map). Apart from being natural questions about any computa-

tional model, such investigations have played a vital role in understanding hardness-randomness

tradeoffs [Bha+25a; CKS19; DSY09; KI04] and the complexity of basic algebraic problems such as

the Resultant and GCD [AW24; Bha+25b] in other algebraic models.

1.1 Main Results

In contrast with what is known for other models, our results are mostly negative. Specifically,

we show the following.

roABP factor non-closure. Our first main result shows that there are explicit polynomial se-

quences that have small roABPs but with an irreducible factor that has roABP complexity super-

polynomial in n. Specifically, we prove roABP complexity lower bound for a root, which is an

irreducible factor of the form xn − f (x1, . . . , xn−1), even when the roABP is allowed to scan the

variables in any order. The formal statement is as follows.
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Theorem 1 (roABP factor non-closure). The following holds over any field. Let n ∈ N be a parameter
and d ≥ n. There exists an n-variate polynomial f of degree d computable by an roABP of width w :=

2O(n), such that one of its (irreducible) factors g requires an roABP of width wΩ(log d) in every variable
order.

Note that, an roABP computing an n-variate polynomial by definition has only n layers.

Hence, the size and the width of an roABP are polynomially related. Secondly, the size and width

parameters in the theorem above are not polynomial in the number of variables, but they can be

easily made polynomial by padding with some additional ‘dummy’ variables. In particular, one

should think of n above as logarithmic in the number of ‘actual’ variables and d as a growing

parameter, up to a polynomial in the number of variables.

This is in contrast to other algebraic models such as algebraic circuits [Kal89; KT90], branch-

ing programs [ST21], formulas and constant-depth circuits [Bha+25a], all of which satisfy the

property that factors of a polynomial f have complexity comparable to that of f . An exception

to this rule is the family of sparse polynomials [GK85], and our construction is based on ‘lifting’

this example to the setting of roABP.

roABP complexity of Symmetric Composition. We study an analogue of the result of Bläser

and Jindal [BJ19] for roABP. More specifically, a classical result in the theory of symmetric func-

tions says that any symmetric polynomial1 fsym(x1, . . . , xn) can be written as a unique polynomial

combination f of the elementary symmetric polynomials ESym1
n, . . . ,ESymn

n, where ESymd
n is the

n-variate elementary symmetric polynomial of degree d. Looking for a computational analogue

of this theorem, Lipton and Regan [LR09], asked: what is the complexity of fsym vis-à-vis that of

f ?

Bläser and Jindal [BJ19] showed that the complexity of f and fsym are polynomially related

in the algebraic circuit model. Recently, the work of Bhattacharjee, Kumar, Rai, Ramanathan,

Saptharishi and Saraf [Bha+25b] extended this result to formulas and constant-depth circuits to

show that fundamental computations such as GCD, resultants and discriminants have efficient

constant-depth circuits in any characteristic. This generalizes a similar result of Andrews and

Wigderson [AW24] in characteristic 0.

We show in this paper that the roABP complexity of a polynomial f and its symmetric coun-

terpart fsym can differ significantly. Taking fsym = ∑n
d=0 ESym

d
n(xk

1, . . . , xk
n), we can show that fsym

is easy but f is exponentially hard.

Theorem 2. The following holds over fields of characteristic zero. Let n ∈ N be a parameter. There
exists an n-variate polynomial f such that the symmetric polynomial fsym := f (ESym1

n, . . . ,ESymn
n) is

computable by an roABP of constant width in every variable order, but any roABP computing f in any
variable order must have width 2Ω(n).

1A polynomial is symmetric if it is invariant under any permutation of its variables.
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In the other direction, our next result shows that even if a polynomial f is easy to compute by

roABP, its symmetric counterpart fsym can still be hard for roABP—–once again in sharp contrast

to the known results for circuits, formulas, and constant-depth circuits. Specifically, the lower

bound for a power of the elementary symmetric polynomial yields an example where f is easy

but fsym is exponentially hard.2

Theorem 3. The following holds over fields of characteristic zero. Let n ∈ N be a parameter. There exists
an n-variate polynomial f computable by an roABP of constant width such that its respective symmetric
polynomial fsym = f (ESym1

n, . . . ,ESymn
n) requires an roABP of width 2Ω(n) in every variable order.

roABP non-closure corollaries. We also investigate the power of roABPs in relation to powering

an efficiently computable polynomial. It is well-known that constant powers of such polynomials

also have small roABPs (see e.g. [And+18, Lemma 2.5]). However, we show that for larger powers,

a superpolynomial blow-up in width is unavoidable.

Corollary 3.1 (roABP powering non-closure). The following holds over fields of characteristic zero.
There exists an n-variate polynomial f computable by an roABP of width O(n) such that for any d, any
roABP computing f d requires width at least (d+n/2

n/2 ) in every variable order.

Remark. We give two example polynomials to prove the hardness of powering for roABP. The

first is the elementary symmetric polynomial (this lower bound will also prove Theorem 3) and

the second is a quadratic polynomial inspired by the proof of Theorem 1.

Another corollary of Theorem 3 is that computing the resultant and the discriminant is hard

for roABP.

Corollary 3.2 (roABP discriminant non-closure). The following holds over fields of characteristic zero.
For all n, there exists an n-variate polynomial f (x, y) computable by an roABP of width O(n) such that
any roABP computing the discriminant Discy( f ) requires width at least 2Ω(n) in every variable order.

Remark. As an immediate consequence of the corollary above, we get that roABP is not closed

under taking resultants.

Related Work. There have been many lines of investigation into roABPs from the point of view

of lower bounds [And+18; KNS20; Nis91], PIT algorithms [Agr+15; And+18; BG22; BS21; FSS14;

FS13; GG20; Gur+17; RS05; ST24], border complexity [BDI21; Blä+20; DDS22; DS22], algebraic

meta-complexity [Bha+24; BT24] and so on.

Our work is closely related to that of Kayal, Nair, and Saha [KNS20], who proved separations

between the power of roABPs and multilinear depth-3 circuits. Non-closure results of a similar

flavour to ours have also been proved by Saha and Thankey [ST24, Appendix E.1]. They construct

explicit families of polynomials that require roABP of exponential size, but arise from applying

invertible linear transformations to sparse polynomials f that have linear roABP complexity.

2This is an especially strong contrast to the other models where it is trivial to show that if f is easy, then so is fsym.
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Some of their ideas, such as those involving the use of expander graphs, also appear in our

work.

Similar separations between roABPs and other models (such as read-twice ABPs) were also

addressed in the work of Anderson, Forbes, Saptharishi, Shpilka and Volk [And+18]. We re-prove

a result from this work separating depth-2 algebraic circuits (products of linear polynomials)

from roABPs in order to understand the roABP complexity of some explicit symmetric functions.

Our lower bound is proved for the specific case of the determinant of a Circulant matrix, which is

a naturally occurring mathematical object and hence may be independently interesting.

1.2 Proof Techniques

The main technique for understanding the roABP complexity of a polynomial is a characteriza-

tion due to Nisan [Nis91], who showed that the roABP complexity of a polynomial f (or more

precisely the width of the smallest roABP computing f ) in a given order is captured by the ranks

of certain matrices related to f , also known as the evaluation dimension of f (formally defined in

Definition 2.6). We also heavily rely on this notion in our work.

Factor non-closure. To construct our examples of polynomials that are efficiently computable

by roABPs but hard to factor, we start with an analogous construction for a weaker setting, that

of sparse polynomials. The following is a well-known construction due to [GK85, Example 5.1].

f (x1, . . . , xn) =
n

∏
i=1

(xd
i − 1) =

n

∏
i=1

(xi − 1) ·
n

∏
i=1

(1 + xi + · · ·+ xd−1
i )︸ ︷︷ ︸

g(x1,...,xn)

.

Note that the polynomial f has 2n monomials while its factor g has dn monomials. This thus

yields an example of a polynomial whose factors have many more monomials than the polyno-

mial itself.

We would like to extend this to the setting of roABP. Unfortunately, the example above does

not work as is, as the polynomial g is a product of univariate polynomials and hence has a small

roABP. Our idea is to ‘lift’ this sparsity lower bound to an roABP lower bound.

The basic idea of lifting, which has proven powerful in the area of Boolean complex-

ity [RGR22] and also Algebraic Proof complexity [For+21], is to start with a function f that

is hard for a simpler computational model (in this case sparse polynomials) and convert it to a

function g that is difficult for a much more powerful model by replacing the variables of f by

functions (typically called ‘gadgets’) in a small number of new variables to obtain g. A version

of this idea can be used to lift degree lower bounds on the multilinear representation for some

functions to lower bounds for algebraic proof systems based on roABPs [For+21].

Inspired by [For+21], we replace the variables of the polynomial f by quadratic multilinear

monomials in a new set of variables y1, . . . , ym where m = Ω(n). We can associate this replace-

5



ment with an undirected graph G on m vertices and n edges. We show that, as long as G is
a sufficiently good constant-degree expander, the corresponding ‘lifted’ polynomials fG and gG are

easy and hard respectively for roABPs with similar parameters to the case of sparse polynomials.

The crucial property of expander graphs that allows us to prove a lower bound on gG is the

Expander Mixing lemma. It can be used to show that given any balanced partition of the vertices

of G, there is a large induced matching between the two sets in the parts. This allows us to find

a large identity matrix as a submatrix of the evaluation matrix of gG, leading to strong bounds

on its evaluation dimension.

The complexity of powering. We give two examples to demonstrate that roABPs are not closed

under powering.

The first is a quadratic polynomial g whose monomials again correspond to a constant-degree

expander graph as in the previous result. The Expander Mixing lemma can again be used to

argue that large powers of g have large evaluation dimension.

The second example is just an elementary symmetric polynomial. Symmetric polynomials

are particularly natural to study in the setting of roABPs, since the polynomials have the same

complexity under any variable ordering. In particular, studying the complexity of a symmetric

polynomial turns into understanding the ranks of combinatorially defined matrices. In the setting

of a power of the elementary symmetric polynomial, we are able to show that this matrix has

large rank.

No Bläser-Jindal type results for roABPs. Already the example of the elementary symmet-

ric polynomial above shows that for the simple polynomial f (y1, . . . , yn) = yd
i , the symmetric

polynomial f (ESym1
n, . . . ,ESymn

n) is hard to compute for roABPs.

To prove a converse result, we use the symmetric polynomial fsym := ∑n
d=0 ESym

d
n(xk

1, . . . , xk
n).

In this case, we need to understand the complexity of the polynomial f (such as

f (ESym1
n, . . . ,ESymn

n) = fsym). It turns out that the polynomial f in this case is completely under-

stood [hui21] and is closely related to the determinant of the Circulant matrix. To prove the lower

bound, we prove an roABP lower bound on this determinant, which we believe is independently

interesting.

Outline. We begin with preliminaries in Section 2. Section 3 contains the proof of Theorem 1. In

Section 4, we prove Theorem 2 and Theorem 3. Finally, in Section 5, we prove all the corollaries.

2 Notations and Preliminaries

Throughout the paper, we will use a growing parameter n > 0 to denote the number of variables

in the polynomial. Let x = (x1, . . . , xn) be the set of indeterminates. A monomial of the form
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xe1
1 · · · xen

n is denoted as xe, where e = (e1, . . . , en) ∈ Nn. The degree of a monomial xe is defined

as deg(xe) := e1 + · · · + en. The degree of a polynomial f ∈ F[x1, . . . , xn] is defined as the

maximum degree of its constituent monomials. We use coefxe( f ) to denote the coefficient of the

monomial xe in f .

2.1 Read-Once Oblivious Algebraic Branching Programs (roABP)

Our model of interest arises as a natural restriction of Algebraic Branching Programs (ABPs),

which we describe next. An Algebraic Branching Program (ABP) is a layered and directed graph

with a source vertex s and a sink vertex t. All edges connect vertices from layer i to i + 1. Further,

the edges are labeled with affine polynomials over the underlying field F. For every path γ from

s to t, wt(γ) is the product of labels on the edges of the path γ. The polynomial computed by

the ABP is defined as

f := ∑
path γ:s⇝t

wt(γ).

The depth of an ABP is defined as the number of layers in the graph, and the width is the

maximum number of nodes in a layer across the graph. The number of vertices used in the

graph is the size of the ABP. The roABP model is a restriction of ABPs, which we define below.

Definition 2.1 (roABP). Let n ∈ N be arbitrary and fix a permutation π : [n] → [n]. An roABP in
the order π computing an n-variate polynomial f (x) is an ABP where in the i-th layer the edge labels are
univariate polynomials over xπ(i).

The size of an roABP is defined as the number of vertices it contains, and the width is defined as the
maximum number of vertices in any layer.

In a foundational work, Nisan [Nis91] characterized the complexity of an ABP in the non-

commutative setting with the rank of certain matrices. Remarkably, the characterization extends

to roABP as well. We define the relevant matrix to formally state this characterization.

Definition 2.2 (Nisan Matrix). Consider an n-variate polynomial f (x) and a variable partition Y ⊔ Z =

{x1, . . . , xn}. The Nisan matrix of f with respect to Y, Z, denoted as MY,Z( f ), is the matrix whose rows
are indexed by monomials mY over Y and whose columns are indexed by monomials mZ over Z. Its entry
at (mY, mZ) is defined as

MY,Z( f )
[

mY, mZ

]
= coefmY ·mZ( f ).

Historically, the Nisan Matrix has also been referred to as the coefficient matrix or partial

derivative matrix. The width of an roABP computing a polynomial f can be exactly characterized

by the rank of the Nisan matrix of f [For14, Lemma 4.5.8].

Theorem 2.3 (roABP characterization). Let f (x) be an n-variate polynomial, and fix a permuta-
tion π on variables. For each i ∈ [n], consider the partition Yi := {π(x1), . . . , π(xi)} and Zi =

{π(xi+1), . . . , π(xn)}, and let MYi ,Zi( f ) denote the corresponding Nisan matrix.
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The width of the smallest roABP computing f in the order π is exactly maxi∈[n] rank(MYi ,Zi( f )). More-
over, the size of the smallest roABP is exactly ∑i∈[n] rank(MYi ,Zi( f )).

We next prove a lemma to demonstrate the usefulness of the roABP characterization, which

will be used in our later proofs.

Observation 2.4. Consider an n-variate polynomial as follows

f := ∏
i∈[n]

(
1 + xi + x2

i + . . . + xd−1
i

)
.

Let Y = {y1, . . . , yn} and Z = {z1, . . . , zn} be disjoint set of variables. Define a 2n-variate polynomial
f̃ := f (y1z1, . . . , ynzn). The rank of the Nisan matrix MY,Z( f̃ ) is dn.

Remark 2.5. Note that f itself can be computed by a constant width roABP in any order.

Proof. Observe that for every monomial mY over Y such that each variable has degree at most

d − 1 in mY, there is a unique monomial mZ of the same form over Z such that coefmY ·mZ( f̃ )
is not zero, and reciprocally, for any monomial mZ over Z there is a unique monomial mY.

Consequently, the Nisan matrix MY,Z( f̃ ) is a permutation matrix, and hence has rank dn.

Evaluation Dimension. An alternative perspective on the Nisan matrix was introduced by

Saptharishi [FS13, Section 6]. As we will see in our proofs, this viewpoint often makes it easier

to reason about roABP complexity.

Definition 2.6 (Evaluation Dimension). Let f (x) be an n-variate polynomial on X = {x1, . . . , xn} over
a field F, and a subset of variables Y and Z := X\Y. The evaluation dimension of f with respect to the
partition Y ⊔ Z is defined as

evalDimY,Z( f ) := rank
({

f (Y, a) | a ∈ F|Z|
})

.

Over large fields, the evaluation dimension is equivalent to the rank of the Nisan matrix.

However, this equivalence does not hold when restricting the evaluation points, e.g. to the

Boolean cube. Nevertheless, the evaluation dimension is always a lower bound of the rank of the

Nisan matrix ([Sap21, Lemma 11.9], and see also [For14, Corollary 4.5.12]).

Theorem 2.7. Let f (x) be an n-variate polynomial, and fix a permutation π on variables. For a variable
partition Y ⊔ Z with Y = {xπ(1), . . . , xπ(i)} and Z = {xπ(i+1), . . . , xπ(n)}, any roABP that computed f
in the order π has width at least evalDimY,Z( f ).

Conversely, if the field F is infinite, there is a roABP computing f of width evalDimY,Z( f ).

2.2 Elementary Symmetric Polynomials

Symmetric polynomials are those that are invariant under any permutation of the variables. A

fundamental and well-studied family within symmetric polynomials is the elementary symmetric
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polynomials, which are defined as follows.

Definition 2.8 (Elementary Symmetric Polynomial). The elementary symmetric polynomial of de-
gree d, on variables x1, . . . , xn, is defined as

ESymd
n(x1, . . . , xn) := ∑

1≤i1<...<id≤n
xi1 . . . xid .

Whenever clear from the context, we write ed := ESymd
n to denote the degree-d elementary

symmetric polynomial in n variables. A more convenient way to define these polynomials is via

the following generating functions:

∏
i∈[n]

(1 + xi · t) =
n

∑
i=0

ESymi
n(x) · ti. (2.9)

These polynomials are called elementary because they form the fundamental building blocks

for all symmetric polynomials. For any n-variate polynomial f (x), we define the n-variate sym-

metric polynomial fsym := f (e1, . . . , en).

Theorem 2.10 (Fundamental Theorem of Symmetric Polynomials). Let R be any commutative
ring, and let g ∈ R[x1, . . . , xn] be a symmetric polynomial. Then there exists a unique polynomial
f ∈ R[y1, . . . , yn] such that

g = fsym := f (ESym1
n, . . . ,ESymn

n).

We refer to [Lan02, Theorem IV.6.1] for the proof of Fundamental Theorem of Symmetric

Polynomials (see also [BC17]). We will also need the following variable partitioning lemma,

which is a special case of [Mer13, Theorem 1.1].

Lemma 2.11 (ESym Variable Partition). Let Y ⊔ Z be a partition of the variables. Then,

ESymd
|Y⊔Z|(Y, Z) =

d

∑
i=0

(
ESymi

|Y|(Y) · ESym
d−i
|Z| (Z)

)
.

Proof. Let Y = {y1, . . . , ym} and Z = {z1, . . . , zn}. Then using Equation 2.9 we can write,

m

∑
i=0

ESymi
m(Y) · ti =

m

∏
i=1

(1 + yi · t)

n

∑
i=0

ESymi
n(Z) · ti =

n

∏
i=1

(1 + zi · t)

Taking the product of the two polynomials above, and comparing the coefficients of td on both

sides proves the lemma.

As a direct consequence of extracting the coefficient of td from Equation 2.9, Shpilka and

Wigderson [SW01] (crediting Ben-Or) presented the following identity for elementary symmetric
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polynomials, which yields a near-optimal roABP of width O(n) computing ESymd
n in any variable

order:

Proposition 2.12 ([SW01, Theorem 5.1]). For any n ∈ N and d ≤ n, let ω be a primitive n-th root of
unity. There exist β0, . . . , βn−1 ∈ C such that

ESymd
n(x1, . . . , xn) = ∑

0≤j<n
β j

(
1 + ω jx1

)
·
(

1 + ω jx2

)
· · ·
(

1 + ω jxn

)
.

Remark 2.13. ESymd
n can also be computed by a provably tight roABP of width min(d + 1, n − d +

1) in any variable order using only coefficients 0 and 1 (see [CT22, Construction 1.2]).

2.3 Resultant and Discriminant

We recall the definitions and properties of resultant and discriminant from factorization litera-

ture. We encourage readers to refer to [GG13, Chapter 6] for a more detailed textbook treatment

of these concepts.

Definition 2.14 (Resultant). Consider two n-variate polynomials f , g ∈ F[x][y] as follows:

f :=
d1

∑
i=0

fi(x) · yi and g :=
d2

∑
i=0

gi(x) · yi.

Define the Sylvester matrix of f and g as the following (d1 + d2)× (d1 + d2) matrix:

Sy( f , g) =



fd1 gd2

fd1−1 fd1 gd2−1 gd2
... fd1−1

. . .
... gd2−1

. . .
...

...
. . . fd1

...
...

. . . gd2

f0
... fd1−1 g0

... gd2−1

f0
. . .

... g0
. . .

...
. . .

...
. . .

...
f0 g0


Then the resultant of the two polynomials with respect to y is defined as the determinant of the Sylvester
matrix as:

Resy( f , g) := Det(Sy( f , g)).

The resultant of two polynomials is non-zero if and only if their gcd is 1. A well-known case

of resultant relevant for factoring algorithms is the discriminant.

Definition 2.15 (Discriminant). Consider a n-variate polynomial f . The discriminant with respect to y
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of f is defined as the resultant, with respect to y, of f and its y-derivative, i.e.,

Discy( f ) := Resy( f , ∂y f ).

The following well-known observation will be useful in the analyses of complexity of the

resultant and the discriminant.

Observation 2.16 (see [CLO05, Chapter 3]). Let f = ∏i∈[n](y − αi) and g = ∏i∈[m](y − βi) be two
univariate polynomials. Then the resultant of f and g with respect to y is given by

Resy( f , g) = ∏
i∈[n]

g(αi).

3 roABP Factor Non-Closure

To prove Theorem 1, we need a polynomial of low roABP complexity, that has a factor of high

roABP complexity. We will use explicit expander graphs for this purpose. The only property we

require from the expander graph is that, for any sufficiently large partition of its vertex set into

two parts, it contains a large induced matching between the two parts.

Lemma 3.1 (Induced Matching Lemma). For every n ∈ N there exists a constant degree graph Gn =

(V, E) on n vertices such that the following holds: for any partition (S, T) of V with |S| = εn and
|T| = (1 − ε)n where ε ∈

[ 1
3 , 2

3

]
, the graph contains Ω(n) edges between S and T that form an induced

matching.

Proof Sketch. There exists an absolute constant δ ∈ (0, 1) such that, for any k ∈ N with k ≥ 1, we

can construct explicit k-regular expander graphs Gn = (V, E) whose second-largest eigenvalue is

at most kδ; see [RVW00].

When k is chosen to be sufficiently large such that the second-largest eigenvalue of Gn is

strictly smaller than k/3, then the lemma follows as an easy consequence of the Expander Mixing

Lemma [AC06] (see also [HLW06, Lemma 2.5]). See, for example, [Juk08, Claim 4].

Define an n-variate polynomial PG associated with constant degree graph Gn = (V, E) guar-

anteed by Lemma 3.1 as follows:

PG := ∏
(i,j)∈E

(
(xixj)

d − 1
)

. (3.2)

Since the degree of the graph is constant, the sparsity of PG is 2|E| = 2O(n) =: w. Therefore, PG

can be computed by an roABP of width w in every variable order. To prove the hardness of its

factor, consider the following polynomial QG:

QG := ∏
(i,j)∈E

(
1 +

(
xixj

)
+
(
xixj

)2
+ . . . +

(
xixj

)d−1
)

. (3.3)

11



It is well known that (1+ x+ x2 + . . .+ xd−1)(x− 1) = xd − 1. Using the identity, we immediately

obtain

PG = QG · ∏
(i,j)∈E

(
xixj − 1

)
.

Lemma 3.4. The polynomial QG defined in Equation 3.3 requires an roABP of width dΩ(n) in every
variable order.

Proof. Let π be any variable order on the variables X = {x1, . . . , xn}, and consider the partition

Y = {xπ(1), . . . , xπ(n/2)} and Z = X \ Y.

Let Y and Z also denote the partition of vertices of Gn. Then from Lemma 3.1, we know there

exists an induced matching M between Y and Z of size Ω(n). Define

f̃ := ∏
(i,j)∈M

(
1 +

(
xixj

)
+
(
xixj

)2
+ . . . +

(
xixj

)d−1
)

= ∏
i∈[t]

(
1 + (yizi) + (yizi)

2 + . . . + (yizi)
d−1
)

,

where for every i ∈ [t], yi is a variable in Y and zi is a variable in Z, and t = Ω(n). Here we have

used the fact that M is an induced matching. In particular, f̃ is obtained from QG by setting to

zero the variables which are not in the matching M. Hence, the rank of the Nisan matrix can

only decrease. Finally, by Observation 2.4,

rank (MY,Z(QG)) ≥ rank
(

MY,Z

(
f̃
))

≥ dΩ(n).

We obtain the claimed lower bound for width of roABP computing QG by Theorem 2.3.

We will now use the discussion so far to give the complete proof of the factor non-closure

result.

Theorem 1 (roABP factor non-closure). The following holds over any field. Let n ∈ N be a parameter
and d ≥ n. There exists an n-variate polynomial f of degree d computable by an roABP of width w :=

2O(n), such that one of its (irreducible) factors g requires an roABP of width wΩ(log d) in every variable
order.

Proof. Consider an n-variate polynomial g := QGn−1 + z, where z is an auxiliary variable and

QGn−1 is defined as in Equation 3.3 using a constant-degree graph Gn−1. We then define

f := g · ∏
(i,j)∈E

(
xi · xj − 1

)
= PG + z · ∏

(i,j)∈E

(
xi · xj − 1

)
.

As argued after Equation 3.2, both PG and ∏(i,j)∈E(xi · xj − 1) have sparsity 2O(n) and hence

we can compute them by an roABP of width w = 2O(n) in every variable order. Therefore, f itself

admits an roABP of width w in every variable order.

12



Observe that g is an irreducible polynomial because it is linear in the auxiliary variable z.3

Further, by Lemma 3.4, any roABP computing QG + z must have width at least dΩ(n) in every

variable order. Since d ≥ n, the claimed width lower bound for roABP computing g follows.

4 roABP Complexity of Symmetric Polynomials

In the following two sections we prove Theorem 2 and Theorem 3 along with their corollaries.

4.1 fsym is easy, but f is hard

In this section, we work over fields of characteristic zero. For the proof of Theorem 2, we consider

fsym = ∑n
d=0 ESym

d
n(xk

1, . . . , xk
n) for a suitable choice of k ∈ [n] to be fixed later.

Let us consider the polynomial

g(y1, . . . , yn, t, z0, . . . , zk−1) :=
k−1

∏
j=0

(
1 + ∑

i∈[n]
yi ·
(
t · zj

)i

)
.

The polynomial g is symmetric in the variables z0, . . . , zk−1. So by Theorem 2.10, there exists a

polynomial g̃ ∈ Z[y1, . . . , yn, t, z0, . . . , zk−1] such that g(y, t, z) = g̃(y, t, e1(z), . . . , ek(z)). Notice

that if ω is a k-th primitive root of the unity, Equation 2.9 impliesei(ω
0, . . . , ωk−1) = 0 for 1 ≤ i < k,

ek(ω
0, . . . , ωk−1) = 1.

Let us define

f (y1, . . . , yn) := g̃(y, 1, 0, . . . , 0, 1) ∈ Z[y]. (4.1)

The previous paragraph ensures that for any k-th primitive root of the unity ω, we have

f (y1, . . . , yn) =
k−1

∏
j=0

(
1 + ∑

i∈[n]
yi · ω j·i

)
. (4.2)

The following lemma shows that f is indeed the unique polynomial inducing the symmetric

polynomial ∑n
d=0 ESym

d
n(xk

1, . . . , xk
n). The following is an argument in [hui21], which we repro-

duce here for completeness.

Lemma (Circulant Polynomial). For any n ∈ N and odd positive integer k ≤ n,

fsym(x) := f (e1(x), . . . , en(x)) =
n

∑
d=0

ESymd
n

(
xk

1, . . . , xk
n

)
.

3See [GK85, Example 5.1] where the hardness is lifted to irreducible factor by considering g = QG + n.
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Proof. Let ω be a k-th primitive root of the unity. Using the factorization identity

(1 − tk) = ∏j(1 − ω j · t) together with Equation 2.9 we obtain the following:

∏
i∈[n]

(
1 − xk

i · (−t)k
)

=
n

∏
i=1

k−1

∏
j=0

(
1 + ω j · xi · t

)
=

k−1

∏
j=0

(
1 +

n

∑
i=1

ei(x) · (ω j · t)i

)
.

By Equation 4.2 and instantiating t by 1, we obtain

∏
i∈[n]

(
1 + xk

i

)
= f (e1(x), . . . , en(x)) .

We call the polynomial f a circulant polynomial because it is closely related to the determi-

nant of a Circulant matrix.4

In the following lemma, we show that the polynomial f is hard for roABP in every variable

order over any field F of characteristic 0.

Lemma 4.3. For any prime k with 2 ≤ k ≤ n, the n-variate polynomial f defined in Equation 4.1 requires
roABP width at least 2(k−1)/2 in any variable order.

Proof. By instantiating a variable, the roABP width can only decrease. So it is sufficient to con-

sider f ′(y1, . . . , yk) := f (y1, . . . , yk, 0, . . . , 0).

By the standard evaluation-dimension lower bound for roABP, it suffices to show the follow-

ing. For any variable order π and the variable partition (U, V) where U = {yπ(1), . . . , yπ((k−1)/2)}
and V = {yπ((k−1)/2+1), . . . , yπ(k)} we have

evalDimU,V( f ′) = rank
({

f ′(u, a) | a ∈ F|V|
})

≥ 2Ω(k).

Re-writing Equation 4.2 in terms of variable partition (U, V), we have

f ′(u, a) =
k−1

∏
j=0

(
ℓj(u) + ℓ′j(a) + 1

)
, (4.4)

where ℓj(u) and ℓ′j(v) are linear polynomials in U and V, respectively.

Arranging the coefficients in the linear forms {ℓj(u) + ℓ′j(v)}j as the rows of a k × k matrix

yields a matrix M whose (j, i)-th entry is ω j·π(i) for j ∈ {0, . . . , k − 1} and i ∈ [k]. Note that M
can be obtained from the standard k × k DFT matrix (ω j·i)i,j∈[k] by permuting columns.

When k is prime, Chebotarev’s theorem on roots of unity [SL96] states that every square

submatrix of the DFT matrix (and hence also M) is nonsingular; see also [Tao04, Lemma1.3] and

4Specifically, in the case k = n, the homogeneous component of degree k of the polynomial f is exactly the
determinant of the circulant matrix of first row (x1, . . . , xn).
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j ∈ {0, . . . , k − 1}

i ∈ [k]

MA

MB
y1

...

yk

U V

k−1
2 × k−1

2

k−1
4 × k−1

2

Figure 1: The matrix M with (j, i)-th entry ω jπ(i), corresponding to the natural variable
order. The highlighted submatrices MA and MB are used in the analysis of evalu-
ation dimension.

[Fre04]. Since |U| = (k − 1)/2, we can fix a subset A ⊆ {0, . . . , k − 1} of size (k − 1)/2 such that

the set {ℓj(u)}j∈A corresponds to a square submatrix MA of M. Such a submatrix MA is non-

singular due to Chebotarev’s theorem. Consequently, the set {ℓj(u)}j∈A is linearly independent.

We can assume that ℓi(u) = ui for i ∈ A, since an invertible linear transformation on the variables

in U does not change the evaluation dimension evalDimU,V( f ′).
Consider any B ⊆ A. By Chebotarev’s theorem, the submatrix MB with rows indexed by

B and columns v2, . . . , v|B|+1 is invertible (the choice |A| = (k − 1)/2 ensures that V contains

enough variables). So, for any b ∈ F, there is a unique point βB,b ∈ F|B| such that for any j in B,

ℓ′j(b, βB,b, 0, . . . , 0) + 1 = 0. Similarly, for any other row index ȷ̃ ∈ {0, . . . , k − 1} \ B, there exists

a unique point γB,̃ȷ ∈ F|B|+1 such that for any j in B ∪ { ȷ̃}, we have ℓ′j(γB,̃ȷ, 0, . . . , 0) + 1 = 0. It

follows that γB,̃ȷ is of the form (b ȷ̃, βB,b ȷ̃
) for a particular b ȷ̃ ∈ F.

Since F is infinite, we can choose b in F outside of
{

b ȷ̃ | ȷ̃ ∈ {0, . . . , k − 1} \ B
}

, and define

αB := (b, βB,b, 0, . . . , 0). For any j in {0, . . . , k − 1}:

ℓ′j(αB) + 1 = 0 ⇐⇒ j ∈ B.

Consequently f ′(u, αB) =
(

∏j∈B uj

)
·
(

∏j∈[k]\B(ℓj(U) + cB,j)
)

where the (cB,j)j/∈B are non-

zero constants. Since for each B, f ′(u, αB) has a distinct lowest degree monomial
(

∏j∈B uj

)
, the

set { f ′(u, αB) | B ⊆ A} is linearly independent. Therefore,

evalDimU,V
(

f ′)
)
≥ dim

{
f ′(u, αB) | B ⊆ A

}
= 2(k−1)/2.

By the evaluation-dimension lower bound of Theorem 2.7, any roABP computing f (in any order)

must have width at least 2(k−1)/2.

Remark 4.5. A close look at the above proof reveals that the lower bound also applies to the
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circulant polynomial ∏k−1
j=0 (∑

n
i=1 yiω

ij) which is exactly the determinant of the circulant matrix.

The lower bound established in Lemma 4.3 serves as the key technical ingredient needed to

prove Theorem 2.

Theorem 2. The following holds over fields of characteristic zero. Let n ∈ N be a parameter. There
exists an n-variate polynomial f such that the symmetric polynomial fsym := f (ESym1

n, . . . ,ESymn
n) is

computable by an roABP of constant width in every variable order, but any roABP computing f in any
variable order must have width 2Ω(n).

Proof. Fix k to be a prime number between n/2 and n. We consider the symmetric polynomial

fsym := ∑n
d=0 ESym

d
n(xk

1, . . . , xk
n). By applying Equation 2.9 with each xi replaced by xk

i , we obtain

that fsym admits an roABP of constant width in every variable order. Moreover, by Lemma 4.3,

the width of any roABP computing f is at least 2(k−1)/2 = 2Ω(n).

4.2 f is easy, but fsym is hard

To prove Theorem 3, it suffices to show the following technical lemma, which shows that taking

powers of elementary symmetric polynomials is hard for roABPs. This lemma also implies Corol-

lary 3.1 from the introduction. In Section 5.1, we will present an alternative proof of Theorem 3

using a quadratic polynomial based on graph-based polynomial from Section 3.

Lemma 4.6 (Powers of ESym). Let k ≤ n/2. Any roABP computing
(
ESymk

n

)d
in any variable order

requires width at least (k+d
k ).

Theorem 3. The following holds over fields of characteristic zero. Let n ∈ N be a parameter. There exists
an n-variate polynomial f computable by an roABP of constant width such that its respective symmetric
polynomial fsym = f (ESym1

n, . . . ,ESymn
n) requires an roABP of width 2Ω(n) in every variable order.

Proof. Let k = ⌊n/2⌋. Consider the polynomial f (x1, . . . , xn) = xk
k. It is easy to see that f can be

computed by an roABP of constant width. However, by Lemma 4.6, any roABP computing the

symmetrisation

fsym = f
(
ESym1

n, . . . ,ESymn
n
)
=

(
ESymk

n

)k

must have width at least (
2⌊n/2⌋
⌊n/2⌋

)
= Ω

(
2n/

√
n
)

.

Remark 4.7. We recall that ESym⌊n/2⌋
n can be expressed as a sum of n many products of univariate

polynomials (see Proposition 2.12). Consequently, using the multinomial theorem, it follows that

(ESym
⌊n/2⌋
n )⌊n/2⌋ can be expressed as a sum of at most O(21.5n) many products of univariate

polynomials. Hence, the bound we obtain in Theorem 3 is almost optimal.
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Proof of Lemma 4.6. Assume that (ek)
d is computed by an roABP of width w and variable order π.

Let Y = {xπ(1), . . . , xπ(k)} and Z = X \ Y be a partition of the variables X. By Theorem 2.7, we

know that

w ≥ evalDimY,Z

(
(ek)

d
)

.

Using Lemma 2.11, and the multinomial theorem, we can write the powers of the elementary

symmetric polynomial ek as follows:

(ek(X))d =

(
k

∑
t=0

et(Y) · ek−t(Z)

)d

= ∑
t0+···+tk=d

ti≥0

(
d

t0, ..., tk

)(
et0

0 (Y) · · · etk
k (Y)

)
·
(

et0
k−0(Z) · · · etk

k−k(Z)
)

. (4.8)

To argue about the evaluation dimension of (ek(X))d, we will need the following elementary

fact from linear algebra.

Fact 4.9. If a matrix M = ∑r
i=1 uivT

i where {u1, . . . , ur} and {v1, . . . , vr} are linearly independent sets of
vectors, then M has rank exactly r.

To use the above fact, we note that the algebraic independence of the elementary symmetric

polynomials (a consequence of Theorem 2.10) implies that the sets

E = {et0
0 (Y) · · · etk

k (Y) : t0 + · · ·+ tk = d} and Ẽ = {et0
k−0(Z) · · · etk

k−k(Z) : t0 + · · ·+ tk = d}

are both linearly independent sets of polynomials. Further, each term on the right-hand side

of Equation 4.8 (corresponding to a tuple (t0, . . . , tk) summing to d) has an evaluation matrix

that is the outer product of the coefficient vectors of the corresponding polynomials in E and Ẽ,

scaled by a suitable multinomial coefficient (which is non-zero because we have assumed that

the characteristic of the underlying field is 0). This implies that the evaluation matrix of (ek(X))d

has rank exactly the number of terms which is (k+d
k ).

5 Non-closure corollaries for roABP

We will now give the proofs of corollaries stated in Section 1.1. We use observations from the

earlier sections to show that operations such as powering, computing resultant, and discriminant

can be hard for roABP.

5.1 Hardness of Powering: a second example

In this section, we give a second proof of (a slightly weaker form of) Corollary 3.1. Note that we

already proved this in the form of Lemma 4.6. By Proposition 2.12 and the following remark, we
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know that ESymn
2n admits an roABP of width O(n) in any variable order. On the other hand, any

roABP that computes (ESymn
2n)

d must have width at least (n+d
n ).

Inspired by the graph-based polynomial which was used to prove factor non-closure in Sec-

tion 3, we can even define a quadratic polynomial Q and prove that powering Q is hard for

this polynomial roABP. The lower bound we obtain is slightly weaker, but the example is even

simpler since Q is just a quadratic polynomial, as opposed to the high-degree and high-sparsity

elementary symmetric polynomial.

Corollary 5.1 (Variant of Corollary 3.1). The following holds over fields of characteristic zero. There
exists an n-variate quadratic polynomial Q computable by an roABP of width O(n) such that for any d,
any roABP computing Qd requires width at least (d+m

m ) in every variable order where m = Ω(n).

Proof. Let G = (V, E) be a constant degree graph on n vertices such that Lemma 3.1 holds. Define

the quadratic polynomial:

QG = ∑
(i,j)∈E

xixj (5.2)

where variables xi correspond to the vertices of G. It is easy to observe that QG can be computed

by an roABP of width |E| = O(n) in any variable order. We will prove that any roABP computing

Qd
G must have large width.

Let π be any variable order on the variables X = {x1, . . . , xn}, and consider the partition

Y = {xπ(1), . . . , xπ(n/2)} and Z = X \ Y. Let Y and Z also denote the partition of vertices on G.

By Lemma 3.1, there exists an induced matching M between Y and Z of size Ω(n). By renaming

the variables if necessary we assume that the matching is between the vertices corresponding to

yi and zi where i ∈ [t] and t = Ω(n).
Define the polynomial:

Q̃ d =

 ∑
(i,j)∈M

xi · xj

d

=

(
∑

i∈[t]
yi · zi

)d

.

In particular, Q̃ d is obtained from Qd
G by setting to zero the variables which are not in the

matching M. Hence, the rank of the Nisan matrix corresponding to Q̃ is a lower bound on the

evaluation dimension of Q w.r.t. the partition (Y, Z).
By construction, for every monomial mY of degree exactly d over Y, there exists a unique

monomial mZ over Z such that the coefficient of mY · mZ in Q̃ d is nonzero (cf. Observation 2.4).

Therefore,

rank
(

MY,Z(Qd
G)
)

≥ rank
(

MY,Z

(
Q̃ d
))

≥
(

d + t − 1
t − 1

)
.

Applying Theorem 2.3, we obtain the desired lower bound on the width of any roABP computing

Qd
G.
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5.2 Hardness of computing resultant and discriminant

We design a polynomial that is simple for roABP, but which turns out to be difficult for roABP

when one computes its discriminant. This, in turn, immediately implies that computing resultant

is also hard for roABP.

Corollary 3.2 (roABP discriminant non-closure). The following holds over fields of characteristic zero.
For all n, there exists an n-variate polynomial f (x, y) computable by an roABP of width O(n) such that
any roABP computing the discriminant Discy( f ) requires width at least 2Ω(n) in every variable order.

Proof. Let g be an (n − 1)-variate polynomial to which the lower bound in Corollary 3.1 is appli-

cable. Fix any d = Ω(n). Define

f := yd − g(x) · y.

Then we have ∂y f = d · yd−1 − g. It is easy to see that the roots of f are α0 = 0 and αi = ωi · g1/(d−1)

for 1 ≤ i ≤ d − 1, where ω is a primitive (d − 1)-th root of unity. Here we work over a suitable

field extension of the base field F to ensure that we have an (d − 1)-th root of unity.

The discriminant of f is defined as the resultant of f and ∂y f with respect to y, i.e., Discy( f ) =
Resy( f , ∂y f ). Then using Observation 2.16 we can compute:

Discy( f ) =
d−1

∏
i=0

∂y f (αi) = −g ·
d−1

∏
i=1

(d − 1) · g

= −(d − 1)d−1gd.

Thus, computing the discriminant of f amounts to powering the polynomial g, for which we

have the required lower bound by Corollary 3.1. The upper bound on the roABP complexity of f
follows from the one for g.

6 Conclusions and Open Problems

In this work, we proved that a width-w roABP computes a polynomial whose irreducible factor

requires roABPs of width at least wlog d, yielding a quasipolynomial separation. This showed that

roABPs are not closed under factoring (see Section 3). A natural next step is to search for polyno-

mials that exhibit an exponential separation between the roABP complexity of a polynomial and

that of its factor.

Our non-factor closure proof relied on the idea that polynomials that are hard for the simpler

sparse model but easy for roABPs can be transformed, using simple gadgets, into polynomials

that are hard even for roABPs. This raises an intriguing question about the scope of such hardness

lifting. Specifically, given a polynomial f (x) of sparsity s, can we always lift using a gadget ϕ

such that the composed polynomial f (ϕ ◦ x) requires an roABP of size Ω(s)?
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One consequence of our study of graph-based polynomials and symmetric compositions is

the proof that powering is hard for roABPs (see Section 5.1). This naturally raises the question

in the other direction: does there exist a polynomial f := gd that is easy to compute by an

roABP, while g is hard for roABP? An affirmative answer would, once again, stand in sharp

contrast to other models such as circuits, algebraic branching programs, and formulas, where

low complexity of f leads to low complexity of g. Interestingly, the analogous question for

sparse polynomials was answered affirmatively for d = 2 in classical works by Rényi [Rén47]

and Erdős [Erd49], and was subsequently extended to arbitrary d in later works [CD91; Ver49].
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