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. Polynomials

» Algebraic Objects f(x) € F[xq, ..., X, ].
* degf =d.Then, };e; < d.
e Aclass of functions which has many classical

applications.

K[Question ]

What is the efficient way to compute a family of
polynomials?
\

J

fi = (1 + x)*

> = (1T +x)(1+x3) (1 + xp)

e To use algebraic tools for our aid, we need a robust f3 = z sign(o) - X10(1) *** Xno(n)

computational model for polynomials.

OESH



. Algebraic Circuits

 Directed Acyclic Graph. Compact representation of Flx1,Xx2] 3 fi = x{ + x5 + 2x1%,
polynomials.
e Resources: Size and Depth
Sink > G
r[ Definition (Algebraic Complexity) \

Size of the smallest circuit computing the internal Nodes —s ° ° °

\polynomial. Denoted by size(f).

e Valiant (1977) formalized the notion computation using  source —— @ @

Algebraic Circuits.
_ . . ' ' Size: 15
e Circuit resources define Algebraic Complexity Classes. Depth: 3



. Algebraic Circuits

e Directed Acyclic Graph. Compact representation of
Y P P P Flx1,x2] 3 fi = x¥ + x5 + 2x1x, = (%1 + x3)?

polynomials.

e Resources: Size and Depth

X
r[ Definition (Algebraic Complexity) \ ™
Size of the smallest circuit computing the |
\polynomial. Denoted by size(f). ) +
e Valiant [Val77] formalized the notion computation using @ @
Algebraic Circuits.
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. Algebraic Complexity Classes

e VP: Easy polynomials.

* n-variate polynomials of poly(n) degree and

poly(n) circuit complexity. VNP
 Example: Determinant.
VP
* VNP: Hard polynomials
* ) VP exponential sum. VF

 Example: Permanent.

e VF: Easy polynomials computable by Formulas.

* Formulas are circuits without reuse of output of

nodes.
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. Valiant’s Conjecture

Valiant’s Conjecture ]

VP #VNP ]
VNP
* To resolve it, show that Permanent is not an easy \/P
polynomial.
VF

Perm, = 2 X10(1) " X20(2) " Xno(n)

OESH

* More structure means easier to prove separation.
* Since algebra has more structure than Boolean, VP vs VNP

should be ‘easier’ than P vs NP,



. Evidences for Valiant Conjecture

BUrgisser 1998 ]

VP=VNP implies P/poly = NP/poly

e VP = VNP is consistent with our belief P/poly # NP/poly.

* |n a relationless world they are separated.

Hrubes, Wigderson, Yehudayoff 2010

In non-associative, commutative world VP # VNP

Dawar, Wilsenach 2020

In symmetric circuits, VP # VNP

*Assuming Generalized Riemann Hypothesis



Algebraic Branching Programs (ABP)

Layered directed Acyclic Graph.
* Edge Labels are linear polynomials in input
variables.
* Another compact representation of polynomials.
e Resources: Size, Width, and Depth
 Complexity: Size of the smallest ABP computing the
polynomial.

* VBP: Easy polynomials computable by small size ABP.

f

> we)

path y:s—t I

Product of edge
weights




. Algebraic Branching Programs

Nisan 1991
) VNP
VF € VBP € VP
VP
e ABP is a restriction on the circuit. VBP
* More such interesting restriction? VF

e VBP,: Bounded width ABPs.

Ben-Or and Cleve 1992 ]

VBP, # VBP;, = VBP, =VF C VBP C VP
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. Algebraic Branching Programs

. ]
Nisan 1991 ]
VNP
VF € VBP € VP
VP
e ABP is arestriction on the circuit. VBP

* More such interesting restriction? V —
¢ VBPk Bounded width ABPs.

Ben-Or and Cleve 1992 ]

VBP, # VBP;, = VBP, =VF C VBP C VP

* Strict containmentis Open.
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. Motivating Example

* Let C compute polynomial f(X,y) € F[xq, ..., X;,, V].

» deg,(f) =d.
f&y) = fo(@) + f1(X) -y + -+ fa(x) - ¥4

| . )
nterpolation ]
Foralli € [d], size(f;) < size(f) - (d + 1) ]

* Each termis linear combination of f (X, a;).

All the coefficients can be extracted in size

O(size(f) - d?).
* If f € VP, then f; € VP.




. Motivating Example

 Consider a polynomial f(x) € F[xq, ..., X5, ]. f(x) = 2 C- ,xflxgz “xgn
* deg(f) =d aesupp()
* Let p be a positive integer. - b
h(x) = Z Cp-xy xy% o x,"
p = m_in(E al-)
a
1E[n]

. 1
Interpolation ]
F size(h) < O(size(f) - d?) ]




. Motivating Example

. i i =~ __ a; ad, a
We can do better if small error is tolerable. f(x) = Z Cq - X, %, 2 "

 Consider a polynomial g € F(¢)[x] : aesupp(f)

gle,x) =P -f(e xq,.., 6 Xp)

— z CC_l . gzai_p . fd
a

h(x) = Z C5 - XDl kP o(e)
|b|=p

= h(x) + 0(¢)
Approximation ]
size(g) = size(h) < O(size(f)) ]

e Recall, size(h) < O(size(f) - d?).



Border Complexity



. Algebraic Approximation

* Apolynomial g(g, x) € F(&)[xq, ..., X, ] approximate
f(x) € Flxq, ..., x,]
g(&,x) = f(X) + ¢ Qe x).
* Where, Q(¢,x) € F[e][x].
* If gisin circuit complexity class C over [F(¢) :

 Wesay, f €C

f[ Definition (Border Complexity) ] N

Size of the smallest circuit approximating the
polynomial. Denoted by size(f).
\_




. Algebraic Approximation

* Give a circuit which computes g(&, x) such that

g(e,x) = f(X) + - Q& %).

Question ]

Given size(f) = size(g), what is size(f)?

e Evaluateate = 0.

* Not legal due to 1/¢ terms in the circuit.

* limg=7f.

-0

* But circuits cannot compute limits.



. Algebraic Closure

* Consider a complexity class Cg. E.g. VBP, VP, VNP etc.
* A polynomial f(X) € C, if thereis a g(&, X) € C(g
such that

g(e,%) = f(X) + - Q(&,%). f @)
* f maynotbein Cf.

Approximative Closure

cC=¢C

e C C G, is trivial. The other direction is not.
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. Strengthened Valiant’s Conjecture

Strengthened Valiant’s Conjecture ]
VP & VNP ]

* Resolving this conjecture would imply VP # VNP.
e Because, VP € VNP and VP € VP.

* Natural to study the strength.

Debordering ]
VP = VP ]

e Question is open for most of the classes. E.g. VF, VP, VNP etc

VP
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. Debordering using Interpolation

 Consider a polynomial f(x) € F[xq, ..., x,,] such

g(e,x) = f(X) +€- Q&%)

that
* size(f) =s.
g(g;f):go+gl’€+g2-52+...+gM,gM

BUrgisser 2004, 2020 ]

M = 0(2%%)

* Interpolate to get g, = f(X).

» size(f) = exp(size(f))



. Known Debordering Results

e XIsiT = xlsin

F(e)[xq, ...

,Xn] 2 9 =

Variables
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. Known Debordering Results

e YIS = =BT and TIZ = 1

Variables

(Ir.poly) = a;x; + -+ a,x,
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Known Debordering Results

YIsITT = I and TIZ = 12

In non-commutative realm VBP = VBP.

2 N2 € VBP

In monotone setting VBP = VBP.



Debordering Depth-3 Circuits



Depth-3 circuits Z*IT1ldl Y

Sum of product of linear terms.

ho(X,) = X1 - Y1+ X2 - Y2
h, cannot be computed by ZlHTTl4ly,

* Regardless of d.

Moreover, h, € VBP.
« YlkMz < VBP.

They cannot compute everything easily.

k d
Flxy, -l 3 F = ) | |5
L J

top-fanin

> — [ Addition Gates ]

(Ir.poly) = a;x; + -+ a,x,




. Universality of ZLkIT1l4]Y

* Let f(x) be homogeneous of degree d

polynomial.

1

k d
IF(&)[xl, yXnl 2 9 = 21_[31']
i J

r[Kumar 2020 ]

f(x) € ZI2IT1IPIZ
\Where, D =exp(n,d).

top-fanin

* Say D= poly(n).
* What is the size(f)?

 XIKIIPly € VNP?

> — [ Addition Gates ]




. Debordering ZI*IT1ldly;

r[Dutta, Dwivedi, Saxena 2021

)
)

\Where, D = poly(n).

»2I1Ply € VBP

e Result holds for arbitrary constant k.

r[Dutta, Saxena 2021

)
J

\Where, D = poly(n).

SIKITIPIE = VBP

* Exponential separation between Xlk+1T]ld]y

and XlklIldly

top-fanin

> — [ Addition Gates ]




Polynomial Identity Testing



. Polynomial Identity Testing

’[PIT ] Y Flx1, %13 fi = xf + x5 + 2x1x,
Given a circuit C over a field F, test if
C =0.
\_ J
e Whitebox.

 Blackbox <= Hitting Set.

/[Hitting Set } N

A set H which certifies the non-zeroness of class C
of polynomials.

Vf+0€eCc, daeH : f(a) #0




. Why do we care?

* Algorithms

 Complexity Theory

Polynomial Identity Testing

e Lower Bounds
e PIT isintrinsically connected to

proving circuit lower bounds.

Strong Lower Bounds




. Border Identity Testing

* Consider a border complexity class C. For every f (%) € C,

thereis g(&,x) € C over F(¢). g(e, %) =f(%) +¢e-0(e %)
/[Border Hitting Set ] N
H is hitting set for C if there is a point @ € H such
that
gle,a) #¢e-h
where h € F|g].
\ /

e Thatmeans, f(a) # 0

* g(&,a) #+ 0 does not suffice.

e Therefore, Hof C does not work.



Known Border PIT

« Polynomial time hitting set for XI1 = XII.
e Klivans and Spielman 2001
« Quasipolynomial time hitting set for ¥ A X.
 Forbes and Shpilka 2013
e PSPACE time hitting set for VP.
* Forbes and Shpilka 2018
e @Guo, Saxena, Sinhababu 2019

e Polynomial time hitting set for sum of restricted
logvariate ABP.
e Bisht and Saxena 2021
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. Border PIT of Depth-3 Circuits

r[Dutta, Dwivedi Saxena 2021 ]

Quasipolynomial time hitting set of ZL¥ITIE, for
_any constant k.

* For circuit of size s and constant k,

s0Uoglogs) time hitting set.

K[Dutta, Dwivedi, Saxena 2021 ]

Polynomial time hitting set of logvariate ZIKITIE,
for any constant k.

\

top-fanin

Addition Gates ]




Conclusion and Future Direction



. Future Directions

 Debordering

e Show XKy = 2Kz or kI A Y = 2k A S,
 Deborder width-2 ABP, and there by deborder VF.

* Investigate other restricted models. E.g Sum of Read

Once ABP.

* |dentity Testing

* Give polynomial time hitting set for ZI¥ITIX.

 Debordering vs Derandomization.

* Other applications of debordering.



