Treading the Border Complexity and Identity Testing Paradigms.

Month A STRUCTURE OF TECHNOLOGY

State of The Art Seminar

Prateek Dwivedi

Prelude

Polynomials

applications.

• Algebraic Objects $f(\bar{x}) \in \mathbb{F}[x_1, ..., x_n]$.

• A class of functions which has many classical

• deg f = d. Then, $\sum_j e_j \le d$.

$$f = \sum_{\bar{e}=(e_1,\dots,e_n)} \alpha_{\bar{e}} \cdot \prod_{j \in [n]} x_j^{e_j}$$

- Question What is the efficient way to compute a family of $f_1 = (x_1 + x_2)^2$ polynomials? $f_2 = (1 + x_1)(1 + x_2) \cdots (1 + x_n)$
- To use algebraic tools for our aid, we need a robust computational model for polynomials.

$$f_3 = \sum_{\sigma \in S_n} sign(\sigma) \cdot x_{1\sigma(1)} \cdots x_{n\sigma(n)}$$

Algebraic Circuits

- Directed Acyclic Graph. Compact representation of polynomials.
- Resources: Size and Depth

Definition (Algebraic Complexity)

Size of the smallest circuit computing the polynomial. Denoted by size(f).

Valiant (1977) formalized the notion computation using

Algebraic Circuits.

• Circuit resources define Algebraic Complexity Classes.

Depth:

3

Algebraic Circuits

- Directed Acyclic Graph. Compact representation of polynomials.
- Resources: Size and Depth

Definition (Algebraic Complexity)

Size of the smallest circuit computing the polynomial. Denoted by size(f).

- Valiant [Val77] formalized the notion computation using Algebraic Circuits.
- Circuit resources define Algebraic Complexity Classes.

Algebraic Complexity Classes

- VP: Easy polynomials.
 - n-variate polynomials of poly(n) degree and
 - poly(n) circuit complexity.
 - Example: Determinant.
- VNP: Hard polynomials
 - \sum VP, exponential sum.
 - Example: Permanent.
- VF: Easy polynomials computable by *Formulas*.
 - Formulas are circuits without reuse of output of nodes.

Algebraic Complexity Classes

- VP: Easy polynomials.
 - n-variate polynomials of poly(n) degree and
 - poly(n) circuit complexity.
 - Example: Determinant.
- VNP: Hard polynomials
 - \sum VP, exponential sum.
 - Example: Permanent.
- VF: Easy polynomials computable by *Formulas*.
 - Formulas are circuits without reuse of output of nodes.

Algebraic Complexity Classes

- VP: Easy polynomials.
 - n-variate polynomials of poly(n) degree and
 - poly(n) circuit complexity.
 - Example: Determinant.
- VNP: Hard polynomials
 - \sum VP, exponential sum.
 - Example: Permanent.
- VF: Easy polynomials computable by *Formulas*.
 - Formulas are circuits without reuse of output of nodes.

Valiant's Conjecture

Valiant's Conjecture

 $VP \neq VNP$

• To resolve it, show that Permanent is not an easy

polynomial.

$$\operatorname{Perm}_{n} = \sum_{\sigma \in S_{n}} x_{1\sigma(1)} \cdot x_{2\sigma(2)} \cdots x_{n\sigma(n)}$$

- More structure means easier to prove separation.
 - Since algebra has more structure than Boolean, VP vs VNP

should be 'easier' than P vs NP.

Evidences for Valiant Conjecture

Bürgisser 1998

VP=VNP implies* P/poly = NP/poly

- VP \neq VNP is consistent with our belief P/poly \neq NP/poly.
- In a relationless world they are separated.

Hrubeš, Wigderson, Yehudayoff 2010

In non-associative, commutative world VP \neq VNP

Dawar, Wilsenach 2020

In symmetric circuits, $VP \neq VNP$

*Assuming Generalized Riemann Hypothesis

Algebraic Branching Programs (ABP)

- Layered directed Acyclic Graph.
 - Edge Labels are linear polynomials in input variables.
- Another compact representation of polynomials.
- Resources: Size, Width, and Depth
- Complexity: Size of the smallest ABP computing the polynomial.
- VBP: Easy polynomials computable by small size ABP.

 $f = x_2 x_3$

Algebraic Branching Programs

Nisan 1991

 $\forall \mathsf{F} \subseteq \forall \mathsf{BP} \subseteq \forall \mathsf{P}$

- ABP is a restriction on the circuit.
- More such interesting restriction?
- VBP_k : Bounded width ABPs.

Ben-Or and Cleve 1992

 $VBP_2 \neq VBP_3 = VBP_k = VF \subseteq VBP \subseteq VP$

Algebraic Branching Programs

• Strict containment is Open.

Motivating Example

- Let C compute polynomial $f(\bar{x}, y) \in \mathbb{F}[x_1, \dots, x_n, y]$.
 - $\deg_{\mathcal{Y}}(f) = d$.
 - $f(\bar{x}, y) = f_0(\bar{x}) + f_1(\bar{x}) \cdot y + \dots + f_d(\bar{x}) \cdot y^d$

Interpolation

For all $i \in [d]$, size $(f_i) \leq size(f) \cdot (d+1)$

- Each term is linear combination of $f(\bar{x}, a_i)$.
- All the coefficients can be extracted in size $O(size(f) \cdot d^2).$
- If $f \in VP$, then $f_i \in VP$.

Motivating Example

- Consider a polynomial $f(\bar{x}) \in \mathbb{F}[x_1, ..., x_n]$.
 - $\deg(f) = d$
- Let p be a positive integer.

$$p = \min_{\bar{a}} \left(\sum_{i \in [n]} a_i \right)$$

Interpolation size(h) $\leq 0(\text{size}(f) \cdot d^2)$

$$f(\bar{x}) = \sum_{\bar{a} \in \text{supp}(f)} C_{\bar{a}} \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$$

$$h(\bar{x}) = \sum_{|\bar{b}|=p} C_{\bar{b}} \cdot x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n}$$

Motivating Example

- We can do better if small error is tolerable.
- Consider a polynomial $g \in \mathbb{F}(\varepsilon)[\bar{x}]$:

 $g(\varepsilon, \bar{x}) = \varepsilon^{-p} \cdot f(\varepsilon \cdot x_1, \dots, \varepsilon \cdot x_n)$

$$=\sum_{\bar{a}}C_{\bar{a}}\cdot\varepsilon^{\sum a_{i}-p}\cdot\bar{x}^{\bar{a}}$$

$$= h(\bar{x}) + O(\varepsilon)$$

Approximation

 $\operatorname{size}(g) = \overline{\operatorname{size}}(h) \le O(\operatorname{size}(f))$

• Recall, size $(h) \leq O(\operatorname{size}(f) \cdot d^2)$.

 $f(\bar{x}) = \sum \quad C_{\bar{a}} \cdot x_1^{a_1} x_2^{a_2} \cdots x_n^{a_n}$ $\bar{a} \in \text{Supp}(f)$ $h(\bar{x}) = \sum_{|\bar{b}|=p} C_{\bar{b}} \cdot x_1^{b_1} x_2^{b_2} \cdots x_n^{b_n} + O(\varepsilon)$ X ε^{-p}

Border Complexity

Algebraic Approximation

• A polynomial $g(\varepsilon, \bar{x}) \in \mathbb{F}(\varepsilon)[x_1, \dots, x_n]$ approximate $f(\bar{x}) \in \mathbb{F}[x_1, \dots, x_n]$

 $g(\varepsilon, \bar{x}) = f(\bar{x}) + \varepsilon \cdot Q(\varepsilon, \bar{x}).$

- Where, $Q(\varepsilon, \bar{x}) \in \mathbb{F}[\varepsilon][\bar{x}]$.
- If g is in circuit complexity class $\mathcal C$ over $\mathbb F(\varepsilon)$:
 - We say, $f \in \overline{\mathcal{C}}$
 - f may not be in \mathcal{C}

Definition (Border Complexity)

Size of the smallest circuit approximating the polynomial. Denoted by $\overline{\text{size}}(f)$.

$$\mathbb{F}(\varepsilon) = \left\{ \frac{p(\varepsilon)}{q(\varepsilon)} \middle| p, q \neq 0 \in \mathbb{F}[\varepsilon] \right\}$$

Algebraic Approximation

• Give a circuit which computes $g(\varepsilon, \overline{x})$ such that

 $g(\varepsilon, \bar{x}) = f(\bar{x}) + \varepsilon \cdot Q(\varepsilon, \bar{x}).$

Question Given $\overline{\text{size}}(f) = \text{size}(g)$, what is size(f)?

- Evaluate at $\varepsilon = 0$.
 - Not legal due to $1/\epsilon$ terms in the circuit.
- $\lim_{\varepsilon \to 0} g = f$.
 - But circuits cannot compute limits.

$$\mathbb{F}(\varepsilon) = \left\{ \frac{p(\varepsilon)}{q(\varepsilon)} \middle| p, q \neq 0 \in \mathbb{F}[\varepsilon] \right\}$$

Algebraic Closure

- Consider a complexity class $\mathcal{C}_{\mathbb{F}}$. E.g. VBP, VP, VNP etc.
- A polynomial $f(\bar{x}) \in \bar{\mathcal{C}}$, if there is a $g(\varepsilon, \bar{x}) \in \mathcal{C}_{\mathbb{F}(\varepsilon)}$

such that

$$g(\varepsilon, \bar{x}) = f(\bar{x}) + \varepsilon \cdot Q(\varepsilon, \bar{x}).$$

• f may not be in $\mathcal{C}_{\mathbb{F}}$.

• $\mathcal{C} \subseteq \overline{\mathcal{C}}$, is trivial. The other direction is not.

Strengthened Valiant's Conjecture

Strengthened Valiant's Conjecture

$\overline{\mathrm{VP}} \not\subseteq \mathrm{VNP}$

- Resolving this conjecture would imply VP \neq VNP.
 - Because, $VP \subseteq VNP$ and $VP \subseteq \overline{VP}$.
- Natural to study the strength.

• Question is open for most of the classes. E.g. \overline{VF} , \overline{VP} , \overline{VPP} etc

Debordering using Interpolation

- Consider a polynomial $f(\bar{x}) \in \mathbb{F}[x_1, \dots, x_n]$ such that
 - $\overline{\text{size}}(f) = s$.

$$g(\varepsilon, \bar{x}) = g_0 + g_1 \cdot \varepsilon + g_2 \cdot \varepsilon^2 + \dots + g_M \cdot \varepsilon^M$$

Bürgisser 2004, 2020 $M = O(2^{s^2})$

- Interpolate to get $g_0 = f(\bar{x})$.
 - $\operatorname{size}(f) = \exp(\overline{\operatorname{size}}(f))$

 $\overline{\text{size}}(f) \le \text{size}(f) \le \exp(\overline{\text{size}}(f))$

• $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$

• $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$

 $(lr.poly) = a_1 x_1 + \dots + a_n x_n$

- $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$
- In non-commutative realm $\overline{VBP} = VBP$.
 - Nisan 1991, Forbes 2016

- $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$
- In non-commutative realm $\overline{VBP} = VBP$.
 - Nisan 1991
- $\overline{\Sigma \land \Sigma} \subseteq \text{VBP}$

- $\overline{\Sigma^{[s]}\Pi} = \Sigma^{[s]}\Pi$ and $\overline{\Pi\Sigma} = \Pi\Sigma$
- In non-commutative realm $\overline{\text{VBP}} = \text{VBP}$.
 - Nisan 1991
- $\overline{\Sigma \land \Sigma} \subseteq \text{VBP}$
- $VBP_2 \neq \overline{VBP_2} = \overline{VF}$.
 - Bringmann, Ikenmeyer, Zuiddam 2018
- In monotone setting $\overline{\text{VBP}} = \text{VBP}$.
 - Bläser, Ikenmeyer, Mahajan, Pandey, Saurabh 2020

Debordering Depth-3 Circuits

Depth-3 circuits $\Sigma^{[k]}\Pi^{[d]}\Sigma$

- Sum of product of *linear terms*.
- They cannot compute everything easily.

 $h_2(\bar{x},\bar{y}) = x_1 \cdot y_1 + x_2 \cdot y_2$

- h_2 cannot be computed by $\Sigma^{[1]}\Pi^{[d]}\Sigma$.
 - Regardless of *d*.
- Moreover, $h_2 \in VBP$.
 - $\Sigma^{[k]}\Pi\Sigma \subset \text{VBP}.$

 $(lr.poly) = a_1 x_1 + \dots + a_n x_n$

Universality of $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$

• Let $f(\bar{x})$ be homogeneous of degree d polynomial.

Kumar 2020 $f(\bar{x}) \in \overline{\Sigma^{[2]} \prod^{[D]} \Sigma}$ Where, $D = \exp(n, d)$.

k d $\mathbb{F}(\varepsilon)[x_1, \dots, x_n] \ni g = \sum_{i=1}^{n} \left[\ell_{ij} \right]$ top-fanin Σ X X X • • • Addition Gates Variables

- Say D = poly(n).
 - What is the size(f)?
 - $\overline{\Sigma^{[k]}\Pi^{[D]}\Sigma} \subseteq \text{VNP}?$

Debordering $\overline{\Sigma^{[k]}\Pi^{[d]}\Sigma}$

• Exponential separation between $\Sigma^{[k+1]}\Pi^{[d]}\Sigma$

Polynomial Identity Testing

Polynomial Identity Testing

Why do we care?

- Algorithms
- Complexity Theory
- Lower Bounds
 - PIT is intrinsically connected to proving circuit lower bounds.

Border Identity Testing

Consider a border complexity class \overline{C} . For every $f(\overline{x}) \in \overline{C}$,

there is $g(\varepsilon, \overline{x}) \in \mathcal{C}$ over $\mathbb{F}(\varepsilon)$.

Border Hitting Set

 \mathcal{H} is hitting set for $\overline{\mathcal{C}}$ if there is a point $\overline{a} \in \mathcal{H}$ such that

$$g(\varepsilon, \overline{a}) \neq \varepsilon \cdot h$$

where $h \in \mathbb{F}[\varepsilon]$.

- That means, $f(\bar{a}) \neq 0$ ullet
- $g(\varepsilon, \overline{a}) \neq 0$ does not suffice.
 - Therefore, \mathcal{H} of \mathcal{C} does not work. •

 $g(\varepsilon, \bar{x}) = f(\bar{x}) + \varepsilon \cdot Q(\varepsilon, \bar{x})$

Known Border PIT

- Polynomial time hitting set for $\overline{\Sigma\Pi} = \Sigma\Pi$.
 - Klivans and Spielman 2001
- Quasipolynomial time hitting set for $\overline{\Sigma \wedge \Sigma}$.
 - Forbes and Shpilka 2013
- PSPACE time hitting set for \overline{VP} .
 - Forbes and Shpilka 2018
 - Guo, Saxena, Sinhababu 2019
- Polynomial time hitting set for sum of restricted logvariate ABP.
 - Bisht and Saxena 2021

Border PIT of Depth-3 Circuits

Dutta, Dwivedi, Saxena 2021

Quasipolynomial time hitting set of $\overline{\Sigma^{[k]}\Pi\Sigma}$, for any constant k.

For circuit of size s and constant k,
 s^{O(log log s)} time hitting set.

Dutta, Dwivedi, Saxena 2021

Polynomial time hitting set of logvariate $\Sigma^{[k]}\Pi\Sigma$, for any constant k.

Conclusion and Future Direction

Future Directions

- Debordering
 - Show $\overline{\Sigma^{[k]}\Pi\Sigma} = \Sigma^{[k]}\Pi\Sigma$ or $\overline{\Sigma^{[k]}\wedge\Sigma} = \Sigma^{[k]}\wedge\Sigma$.
 - Deborder width-2 ABP, and there by deborder VF.
 - Investigate other restricted models. E.g Sum of Read Once ABP.
- Identity Testing
 - Give polynomial time hitting set for $\overline{\Sigma^{[k]}\Pi\Sigma}$.
 - Debordering vs Derandomization.
- Other applications of debordering.

