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. Polynomial Identity Testing

* Blackbox
* Quasi-poly time PIT for ZIOMWIMEMIOMI] gnd Oz A
circuits.
* Whitebox

* Poly time PIT for ZIOMITIT A circuits.



Prelude



. Natural Queries

Given a polynomial f,

* Evaluateitatx; = aq, ..., X, = a,.

* For some polynomial g, compute f + gand f X g.
* Find the factors of f.

* Forsome polynomial g, test g = {.



. ldentity Testing

For some polynomial g, test g = f. f =

* Same coefficients, a; = [z
e Alternatively, check if all coefficients

are zeroin f — g.

That’s simple, but not efficient.

Number of coefficients = (n;d) ~ EXP(n, d).



. Representing Multivariate Polynomials

A2 2
 Algebraic Circuits Flay, %213 f1 =i + x5 +2x:%

* [ntuitive. Succinct.
* (Operations are easy. Q |

 Most algebraic problems naturally

h=2
fit into the framework. ° ° ° -

Y

Size = Number of gates = 4




. Polynomial Identity Testing

1

PIT

B

J

-

Given a circuit C over a field IF, test if

C =0.

~

Whitebox.
Blackbox.

PIT is efficient with randomness.

Flxy,x,] D f1 = x{ + x5 + 2x,x,




. Efficient Randomized algorithm

/{ PIT Lemma ]
Let S be a subset of field. For f # 0 and some random a € S"

Pr[ f(a) =0] <

\ IsT

e Randomized algorithm: Consider set S of size more than (d + 1).

* Also gives a poly(d™) time deterministic algorithm.



. Why do we care?

e Algorithms

e Complexity Theory

Polynomial Identity Testing

* Lower Bounds
e PIT is intrinsically connected to

proving circuit lower bounds.

Strong Lower Bounds




State of Affairs



. Status Quo

* Nothing better than exponential known for general algebraic

circuits.
* Constant depth circuits in SUBEXP algorithm. [LST21]

e Efficient algorithm are there for very restricted circuits.

[LST21] Nutan Limaye, Srikanth Srinivasan, Sébastien Tavenas



. Depth-4 circuits

y Ikl Lol

The restriction is speciall

A

”{ Agrawal-Vinay J )

LIIXII PIT is almost as hard as the
\general case.

J

* Nothing better than SUBEXP is known.

* Poly (and quasi-poly) time algorithms

are found with various restrictions |AVO8] Manindra Agrawal V. Vinay



. PIT on Depth Restricted Circuits

y Ikl Lol

* Promising model.

e Poly (and quasi-poly) time algorithms
are found with various restrictions on
the depth-4 model.

* Bounded top and bottom fanin.

Paper Restriction PIT
Saxena and _ K
Seshadhri 0=1 poly(n, d®)
Beecken, Mittmann Bounded trdeg poly(s¥)
and Saxena (k=trdeg bound)
Agarwal, Saha, Bounded top-

Saptharishi and fanin, poly(skz)
Saxena multilinear
Low individual
deg QP(n)
Kumar and Saraf Bounded local
trdeg and QP(n)
bottom fanin
Peleg and Shpilka k=3486=2 poly(n, d)




Results



. Blackbox PIT of ZLEITIZIILO] circuits

”—[ Theorem [DuttaDSaxena21]

For constant k, 0 there is a quasi-poly time blackbox PIT algorithm
Kfor > KITT2119! circuits.

0(6%:k-10g 5) time deterministic

* Forsize s circuit we give s
algorithm.

* The algorithm is quasi-poly even up to k, § = poly(log s).



. PIT on XXX A circuits
k
Z[R]HZ A Flxy, ..., xn] 3 f = Z n(gijl(xl) + -+ gijn ()
T

e Sum of product of sum of univariates.

top-fanin

* Deterministic PIT was open since 2013

[SSS13].

[SSS13] Chandan Saha, Ramprasad Saptharishi, Nitin Saxena



. Blackbox PIT of ZXI[IX A circuits

.

A
”_[ Theorem [DuttaDSaxena21] J

For constant k there is a quasi-poly time blackbox PIT algorithm for
> KI[TE A circuits.

* For size s circuit we give s?(k109 109 5) time deterministic

algorithm.

e Faster than our XI*ITIZITI9! PIT algo.




. Whitebox PIT of ZKITIY A circuits

’—[ Theorem [DuttaDSaxena21]

For constant k there is a poly time whitebox PIT algorithm for
>IKIIE A circuits.

.

* For size s circuit we give s0(E7%) time deterministic algorithm.



Proof Overview



. DiDI Technique on ZI¥ITIX A circuits

) : .
k] Design a homomorphism

f‘[ Problem (Z'I1X A PIT) ] A - FI3] o (% ]

Test manifesting ‘nice’ property.

?
f= T1+T2+Tk =O

where Ti € [1X A of deg <d. Divide and Derive to reduceto k — 1

. J case.

e Divide and Derive inductively. Top IT = A.
* Primalldea: g(X) # 0 & g'(X) # 00or g(0) # 0

XA X A hasa poly-time whitebox PIT. i
PITon k = 1 is easy.




. Jacobian hits for ZKITIZIT] blackbox PIT

1 Desi '
gn a homomorphism
A Problem | 2 e
manifesting ‘nice’ property.
Test 9
f: T1+T2+Tk :O
Fixing x suitably using ‘nice’ property
5] ¥’ Flx] - F[z]
Where Ti — H] gl] e 1211 of degree at such that it preserves rank of Jacobian.
most d and size s.
N %

Extend W' to a faithful map
®: Flx] —» Flz, y1, ... Vi, t]

e Faithful map @ follows from Hitting set of

> A XTI circuit.

Use PIT Lemma for final Hitting Set of

o(f)

*Agarwal, Saha, Saptharishi and Saxena

« d(f) is essentially k variate.



Open Problems



. Open Problems

* Design a poly-time algorithm for X A > circuits.
e It will place PIT of ZI*ITIZIMlO] in p.

e Solve PIT for ZIIME A2 - sum of product of sum of bivariate fed
into top product gate.

* Improve the dependence on k for ZI¥ITIZ A whitebox PIT. '

O

e Currently it is exponential in k.




. Hitting Set

/[ Definition [Hitting Set] }

A set H C F™ which certifies the non-zeroness of class C of
polynomials.
Vf+0E€C, JaeH : f(a) #0
\

* Blackbox PIT & Hitting Set.



. Trivial Hitting Set

/‘[ Lemma [Trivial Hitting Set] }

For a class of n-variate, deg d polynomials, there exists an explicit
hitting set of size poly(d™)

 Sufficeswhenn = 0(1).
e Offers a general framework for PIT algorithms.

e Design a variable reducing non-zeroness preserving map.



. Recapitulation of ZXITIXITIO] blackbox PIT

{

Problem } ™

Test

o

?
f: T1+T2+Tk:O

Where T; = []; 95 € Mol of degree at

most d and size s.

/

¥ F[x] - F[x, z]

Design @ homomorphism
manifesting nice property.

.

|

¥’ Flx] - F[z]

Fixing X suitably using ‘nice’ property
such that it preserves rank of Jacobian.

-

Extend W' to a faithful map
®: F[x] - F[z, 7y, t]

N—

Use PIT Lemma for final Hitting Set of

o(f)




. Faithful homomorphism

e Set of polynomials T = {Ty, ..., T,,,} in F[X] are algebraically
dependent if there is an non-zero annihilator A such that A(T ) = 0.

* Transcendence Degree (trdeg): Size of the largest subset of S € T
which is alg. independent.

e Siscalled the Transcendence Basis.



. Faithful homomorphism

f{ Definition [Faithful hom.] J

®: F[x] - F|y] such that
trdegg (T) = trdegF(CD(’I_")).

\-

/[ Theorem [Faithful is useful] }

Forany C € Flyq, ..., Vil

C(T) =0 < c(o(T)) = 0.
-




. Recapitulation of ZXITIXTTO] blackbox PIT

1 Design @ homomorphism
/[ Problem J \ ¥: Flx] - F[x, z]
manifesting ‘nice’ property.
Test ) l
f: T1+T2+Tk :O
Fixing X suitably using ‘nice’ property
5] ¥’ Flx] - F[z]
Where Ti — H] gl] e 1211 of degree at such that it preserves rank of Jacobian.
most d and size s. ‘
N %

Extend W' to a faithful map
®: F[x] - F[z, 7, t]

Use PIT Lemma for final Hitting Set of

o(f)




. Jacobian Hits (Again)

e Jacobian Jz(T) is a k X n matrix.

) 0, (Ty)
9:(T) = (0(1)) = i
XN . (Tm

* Linear rank captures the alg. rank.

/_[ Theorem [Beecken Mittmann Saxena]

Ox, (T1)

ax_n.(Tk)_

N—

Jacobian Criterion: For large char F,

trdegp (T) = rankpg)Jx(T)




. Jacobian Hits (Again)

e Jacobian offers the recipe of faithful map.

* Let W': F|x] — F[Z] such that

rankp s Jz(T) = rankIF(z_)Lp’(Jf(T))-

/‘[ Theorem [ASSS16%*]

\is faithful for T, ...

Ty

|
E

For large char IF, the map ®: F[x]| — [z, y, t] defined as

(2 yj t' ) + W'(x;)
j

J

*Agarwal, Saha, Saptharishi and Saxena



. Recapitulation of ZXITIXTTO] blackbox PIT

/[ Problem }

Test 9

f: T1+T2+Tk:()

most d and size s.

o

Where T; = []; 95 € Mol of degree at

Design a homomorphism
¥: Flx] — F[x, z]
manifesting ‘nice’ property.

/

such that it preserves rank of Jacobian.

Extend W' to a faithful map
®: F[%] - F[z 7, t]

Use PIT Lemma for final Hitting Set of

(1)




. Homomorphism ¥

* Let T1; _, Tk s the tr;baSiS' (732(7_1) - (axJ(Tl))
* Let Jz(T) = Det Jz(T), .

e To preserve rank, ensure determinant is non-zero.

» T; = [1; gijand L(Ty) = {g;]j}.

]f(gl' ---;gk)
91 Yk

Je(T) =Ty . Ty
g1€L(Ty),..gkEL(T})



. Homomorphism ¥

* Considerana = (aq, ..., a,) € ™ such that g(a) # 0 for all
g € U; L(T;) . Find it using PIT for sparse polynomials.
e Define W:F[x] —» F[x, z | such that

X; » Z-x;+ Q.

Z Y(z(9g1) > Gr))
Y(g1 - gi)

F

LPUX(T)) — Lp(T1 Tk)

)




. Homomorphism ¥

Define R = F[z,]/(z}) where D = deg(f) + 1.

/[ Claim }

Over R|x],
* Jx(T) =0 = ¥(x(T)) = 0.

* Since J¢(T) # 0, then F # 0 over R[x].
* Constructaset H' © F™: LP(]f(’I_‘))|f=d + 0 forsomea € H'.

* For this we construct a hitting-set for F.



. Recapitulation of ZXITIXTTO] blackbox PIT

1 Design a homomorphism
A Problem | \ e
Test 9
f: T1+T2+Tk :O
Where Ti — H] gl] S HZH[(S] of degree at such that it preserves rank of Jacobian.
most d and size s.
\ %

Extend W' to a faithful map
®: F[x] - F[z, 7, t]

Use PIT Lemma for final Hitting Set of

(1)

36



. Towards extending ¥ to ¥’

z Yz (g1 - 9i))

Y(J(T)) = W(Ty ... Ty) ¥ (g1 90)

)

F

/[ Claim [Nice Property] }

Over R[x], F can be computed by T A ZIM%circuit of size
(s-39)°"
 F=P(x,z)/Q whereQ € F.

\- Degree of P wrt z remains polynomially bounded.

> A X8 - sum of powers of (degree ) sparse polynomials.



. Towards extending ¥ to ¥’

* Essentially, H" will be the hitting-set for ‘small’ size X A s1ilsl

* [Forbesl15] gave the hitting set for the class.

 Use that to conclude that b € H' € F" such that P(E, Z) # 0is

of size s0(8%klogs)
e H' fixes x in ¥ and gives W': F|x] — F|z]

X; » Z-b; +a;.



. Recapitulation of ZXITIXTTO] blackbox PIT

1 Desi '
gn a homomorphism
A Problem | 2 e
manifesting ‘nice’ property.
Test 9
f: T1+T2+Tk :O
Fixing x suitably using ‘nice’ property
5] ¥’ Flx] - F[z]
Where Ti — H] gl] e 1211 of degree at such that it preserves rank of Jacobian.
most d and size s.
N %

Extend W' to a faithful map
®: Flx] —» Flz, y1, ... Vi, t]

e Faithful map @ follows from Hitting set of

> A XTI circuit.

Use PIT Lemma for final Hitting Set of

o(f)

* Therefore, ®(f) is essentially k + 3 variate.



