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Polynomials

Algebraic Objects 𝑓( ҧ𝑥) ∈ 𝔽[𝑥1, … , 𝑥𝑛]. deg 𝑓 = 𝑑. 

Then, σ𝑗 𝑒𝑗 ≤ 𝑑.

𝑓 = ෍

ҧ𝑒=(𝑒1,…,𝑒𝑛)

𝛼 ҧ𝑒 ⋅ ෑ

𝑗∈[𝑛]

𝑥
𝑗

𝑒𝑗

What is the efficient way to compute a family of 

polynomials?

Question

𝑓 = 1 + 𝑥1 + 𝑥2 + 𝑥3 + 𝑥1𝑥2 + 𝑥1𝑥3 + 𝑥2𝑥3 + 𝑥1𝑥2𝑥3

𝑓 = 𝑥1 + 1 ⋅ 𝑥2 + 1 ⋅ (𝑥3 + 1)
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Polynomials

Ubiquitous object in Computer Science.

Graph Algorithms

Coding Theory

Cryptography

Computational Algebra

Circuit Complexity

𝑓1 = 𝑥1 + 𝑥2
2

𝑓2 = 1+ 𝑥1 1 + 𝑥2 ⋯(1 + 𝑥𝑛)

𝑓3 = ෍

𝜎∈𝑆𝑛

𝑠𝑖𝑔𝑛 𝜎 ⋅ 𝑥1𝜎 1 ⋯𝑥𝑛𝜎 𝑛



Algebraic Circuits

Size of the smallest circuit computing the 
polynomial. Denoted by size(𝑓).

Definition (Algebraic Complexity)

Valiant (1977) formalized the notion of computation 

using Algebraic Circuits.

Circuit resources define Algebraic Complexity Classes.

+

+ +

𝑥1

𝑓1 ∈ 𝔽[𝑥1, 𝑥2, 𝑥3, 𝑥4]

2

× × ×

𝑥3 𝑥4𝑥2

5



Algebraic Complexity Classes

VP: Computable by circuits of size poly(𝑛, 𝑑).

VNP: Explicit polynomials. 

VP

VNP

There are explicit polynomials which cannot be 
computed efficiently.

Valiant’s Conjecture

Object of Interest: Polynomials of 𝑛 variate and degree 𝑑.

6

VP = VNP implies* P/poly = NP/poly

Bürgisser 1998

In a more structural and relation-less world, VP ≠ VNP.



Thesis Contribution

Yet another thesis which does not solve Valiant’s 

Conjecture.
Explicitness

Circuit 
Factoring

Identity 
Testing

E: Prove that a class of polynomials is in VNP.

CF: A class of polynomials is closed under factoring.

IT: Efficiently test equivalence.

Contributions
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Algebraic Approximation

Polynomial 𝑔 𝜀, 𝒙 over 𝔽 𝜀 approximate 𝑓 𝒙

𝑔 𝜀, 𝒙 = 𝑓 𝒙 + 𝜀 ⋅ 𝑄 𝜀, 𝒙 .

where 𝑄 𝜀, 𝒙 over 𝔽[𝜀] is higher order error terms.

If 𝑔 is in circuit complexity class 𝒞 over 𝔽(𝜀) :

• We say, 𝑓 ∈ ҧ𝒞

• 𝑓 may not be in 𝒞

Size of the smallest circuit approximating the 

polynomial. Denoted by size(𝑓).

Definition (Border Complexity)

𝑔 𝜀, 𝒙 = 𝑓 𝒙 + 𝜀 ⋅ 𝑄 𝜀, 𝒙

ൗ1 𝜀2

𝜀3 + 𝜀
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𝔽 𝜀 = ൗ
𝑝(𝜀)

𝑞(𝜀) 𝑝, 𝑞 ≠ 0 ∈ 𝔽[𝜀]



Algebraic Approximation

Given size 𝑓 = size𝔽(𝜀)(𝑔), what is size(𝑓)?

Question (Debordering)

lim
𝜀→0

𝑔 = 𝑓. But circuits cannot compute limits.

Arbitrary polynomials in 𝜀 are treated as free constants 

in circuit computing 𝑔.

size 𝑓 ≤ exp size 𝑓

Bürgisser 2004
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𝑔 𝜀, 𝒙 = 𝑓 𝒙 + 𝜀 ⋅ 𝑄 𝜀, 𝒙

ൗ1 𝜀2

𝜀3 + 𝜀

𝔽 𝜀 = ൗ
𝑝(𝜀)

𝑞(𝜀) 𝑝, 𝑞 ≠ 0 ∈ 𝔽[𝜀]
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Border Classes

Consider a complexity class 𝒞𝔽 like VP or VNP.

A polynomial 𝑓 ∈ ҧ𝒞, 

𝑔 𝜀, ҧ𝑥 = 𝑓 ҧ𝑥 + 𝜀 ⋅ 𝑄 𝜀, ҧ𝑥 ∈ 𝒞𝔽(𝜀).

𝑓 may not be in 𝒞𝔽.

• 𝒞 ⊆ ҧ𝒞, is trivial. The other direction is not.

ҧ𝒞 = 𝒞

Border Closure

𝒟

𝒞

𝑓( ҧ𝑥)
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Strengthened Valiant’s Conjecture

Resolving this conjecture will prove VP ≠ VNP.

Because VP ⊆ VNP and VP ⊆ VP.

Natural to study the strength.

Question is open for most of the classes — VF, VP, VNP etc.

VP ⊈ VNP

Strengthened Conjecture

VP = VP

Debordering

?

VP VNP

VP



Explicitness

Explicitness

Circuit 
Factoring

Identity 
Testing
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Depth-4 circuits Σ[𝑘]ΠΣ ∧

Computes sum of product of sum of univariates.

𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =෍
𝑖=1

𝑘

ෑ
𝑗=1

𝑑

𝑔𝑖𝑗1 𝑥1 +⋯+𝑔𝑖𝑗𝑛 𝑥𝑛

× × ×

+Σ

Π ⋯

Addition GatesΣ

Top fan-in

Univariate Univariate Univariate

𝑓 𝑥1, … , 𝑥𝑛 = Det
⋮

… 𝑎 ⋅ 𝑥𝑖 + 𝑐 …

⋮ 𝑤×𝑤

The sizeABP 𝑓 = 𝑚𝑖𝑛 𝑑𝑖𝑚 ≤ poly(𝑛).

Algebraic Branching Program (VBP)

Σ[𝑘]ΠΣ ∧ ⊆ VBP ⊆ VNP
Variables
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Depth-4 circuits Σ[𝑘]ΠΣ ∧

Let 𝑓( ҧ𝑥) be homogeneous of degree 𝑑 polynomial.

𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =෍
𝑖=1

𝑘

ෑ
𝑗=1

𝑑

𝑔𝑖𝑗1 𝑥1 +⋯+𝑔𝑖𝑗𝑛(𝑥𝑛)

× × ×

+Σ

Π ⋯

Addition GatesΣ

Top fan-in

Univariate Univariate Univariate

𝑓 ҧ𝑥 ∈ Σ[2]Π[𝐷]Σ
Where, 𝐷 = exp(𝑛, 𝑑).

Mrinal 2020

Variables

Say D= poly(𝑛). What is the size 𝑓 ?

Are polynomials in Σ[𝑘]Π[𝐷]Σ ∧ explicit?
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Depth-4 circuits Σ[𝑘]Π[𝑑]Σ ∧
𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =෍

𝑖=1

𝑘

ෑ
𝑗=1

𝑑

𝑔𝑖𝑗1 𝑥1 +⋯+𝑔𝑖𝑗𝑛(𝑥𝑛)

× × ×

+Σ

Π ⋯

Addition GatesΣ

Top fan-in

Univariate Univariate Univariate

Σ[𝑘]Π[𝐷]Σ ∧ ⊆ VBP ⊆ VNP
where, 𝐷 = poly 𝑛 and constant 𝑘.

Dutta, D., Saxena 2021

Variables

Explicitness is proved using DiDIL — Divide, 

Derive, Interpolate, with Limits.

The size of the depth-4 circuit is polynomial in the 

number of variables.



Explicit Class

A class of polynomials whose coefficients can 

be computed efficiently, and perhaps more.

Polynomial 𝑓 ∈ VNP

𝑓(𝑥1, … , 𝑥𝑛) = ෍

𝒂 ∈ 0,1 𝑚

𝑔(𝑥, 𝑎)

Where the verifier 𝑔 in VP and 𝑚 = poly(𝑛). 

Definition (VNP)

If the coefficient function of a polynomial 𝑓 is in #P/poly. 

Then, 𝑓 ∈ VNP.

Valiant’s Criterion

VNP

VNP

17



Presentable Border 

Approximating circuits use arbitrary polynomials 

in 𝜀 of arbitrary complexity as free constant.

Essentially the same as VNP, but all the 𝜀

polynomial are of small size.

Definition (Presentable VNP)

VNP

VNP

VNP𝜀

Although size𝔽[𝜀](𝑔) is bounded, size𝔽(𝑔) is 

perhaps unbounded.

18



Presentable is Explicit

VNP

VNP𝜀 = VNP

Over any finite fields, VNP𝜀 = VNP.

Bhargav, Dwivedi, and Saxena 2024

It gives a tower of containment: VP ⊆ VP𝜀 ⊆ VNP

VP = VP𝜀 ≠ VNP.

Conjecture (Presentable Separation)

19



Circuit Factoring

Explicitness

Circuit 
Factoring

Identity 
Testing

20



VNP Factor Closure

Consider an arbitrary factor 𝑢 of a polynomial 𝑓 ∈ 𝒞. 

Then is 𝑢 ∈ 𝒞?

Bürgisser conjectured that VNP is closed under 

factorization.

Chou, Kumar and Solomon, 2018 proved it for 

characteristic zero fields.

Over any finite field, VNP is closed under 
factorization.

Bhargav, Dwivedi, and Saxena 2024

Factors of VP over finite fields are in VNP.

VP

VNP

21



Debordering Factors

Bürgisser used Border to understand the complexity 

of low-degree factors. 

The poly(𝑛)-degree factors of poly(𝑛)-size 
circuits are in VP.

Conjecture (Low degree factors)

Bürgisser proved that such low-degree factors are in 

VP. We observe that they are, in fact, in VP𝜀.  

Over finite fields, low-degree factors of small-
size circuits are in VNP.

Bhargav, Dwivedi, and Saxena 2024

VNP VP VP

Low Deg Factors
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Identity Testing

Explicitness

Circuit 
Factoring

Identity 
Testing

23
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Identity Testing

For some polynomial 𝑔, test 𝑔 = 𝑓.

• Same coefficients, 𝛼 ҧ𝑒 = 𝛽 ҧ𝑒?

• Alternatively, check if all coefficients are zero in 

𝑓 − 𝑔.

That’s simple, but not efficient.

𝑓 = ෍𝛼 ҧ𝑒 ⋅ ෑ

𝑗∈[𝑛]

𝑥
𝑗

𝑒𝑗

𝑔 = ෍𝛽 ҧ𝑒 ⋅ ෑ

𝑗∈[𝑛]

𝑥
𝑗

𝑒𝑗

Number of coefficients = 𝑛+𝑑
𝑑

≈ EXP(𝑛, 𝑑).

Natural queries, given a polynomial 𝑓, include 

evaluation, addition, multiplication, factoring, etc.



25

Why do we care?

Primality Testing, Perfect Matching, Factoring, 

and Reconstruction Algorithms.

Emerges naturally in complexity theory.

A simple to state, but difficult-to-solve problem.
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Efficient Randomized algorithm

Let 𝑆 be a subset of field. For 𝑓 ≠ 0 and 

some random 𝑎 ∈ 𝑆𝑛

Pr 𝑓 𝑎 = 0 ≤
𝑑

𝑆
.

PIT Lemma

Randomized algorithm: Consider set S of size 

more than 𝑑 + 1 .

Also gives a poly(𝑑𝑛) time deterministic 

algorithm.

𝑓

𝑥1 ⋯ 𝑥𝑛

𝑔

𝑥1 ⋯ 𝑥𝑛

=
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Polynomial Identity Testing

Given a circuit 𝐶 over a field 𝔽, test if 𝐶 = 0.

PIT

Blackbox: Test using evaluations only.

Whitebox: Look inside the circuit

+

+ +

𝑥1

𝑓1 ∈ 𝔽[𝑥1, 𝑥2, 𝑥3, 𝑥4]

2

× × ×

𝑥3 𝑥4𝑥2

Nothing better than exponential is known for general 

algebraic circuits. Constant depth circuits has 

SUBEXP algorithm. [LST21]

Efficient algorithms are known for only very 

restricted circuits.



28

Depth-4 circuits
𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =෍

𝑖

𝑘

ෑ

𝑗

sparse polynomial 𝑖𝑗

× × ×

+Σ

Π ⋯

+

×

Σ

top-fanin

Variables

Π

Σ[𝑘]ΠΣΠ[𝛿]

The restriction is special!

ΣΠΣΠ PIT is almost as hard as the general 

case.

Agrawal-Vinay

For constant 𝑘, 𝛿 there is a quasi-poly time 

black box PIT algorithm for Σ[k]ΠΣΠ[δ]

circuits.

Dutta, D., Saxena 2021
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Whitebox PIT on Σ[𝑘]Π[𝑑]Σ ∧
𝔽 𝑥1, … , 𝑥𝑛 ∋ 𝑓 =෍

𝑖=1

𝑘

ෑ
𝑗=1

𝑑

𝑔𝑖𝑗1 𝑥1 +⋯+𝑔𝑖𝑗𝑛(𝑥𝑛)

× × ×

+Σ

Π ⋯

Addition GatesΣ

Top fan-in

Univariate Univariate Univariate

For constant 𝑘 there is a poly time white 

box PIT algorithm for Σ[k]ΠΣ ∧ circuits.

Dutta, D., Saxena 2021

Variables

Divide and Derive inductively. Top Π → ∧.

Primal Idea

𝑔 𝑋 ≠ 0 ⟺ 𝑔′ 𝑋 ≠ 0 𝑜𝑟 𝑔 0 ≠ 0

Σ ∧ Σ ∧ has a poly-time white box PIT.



Border PIT

ℋ is robust hitting set for ҧ𝒞 if there is a point ത𝑎 ∈ ℋ
such that 

𝑔 𝜀, ത𝑎 ≠ 𝜀 ⋅ ℎ
where ℎ ∈ 𝔽[𝜀].

Definition (Robust Hitting Set)

The point ത𝑎 is a non-zeroness certificate — 𝑓 ത𝑎 ≠ 0.

𝑔 𝜀, ത𝑎 ≠ 0 does not suffice; hence we need 

robustness.

𝑔 𝜀, 𝒙 = 𝑓 ഥ𝒙 + 𝜀 ⋅ 𝑄 𝜀, ഥ𝒙

𝜀2

𝜀3 + 𝜀

DiDIL de-borders Σ[𝑘]ΠΣ ∧, and DiDI de-randomize PIT 

on Σ[𝑘]ΠΣ ∧. 

30



PIT on Σ[𝑘]Π[𝑑]Σ ∧

Quasipolynomial time hitting set of Σ[𝑘]ΠΣ ∧, for 

any constant 𝑘.

Dutta, D., Saxena 2021

Although we could not de-border Σ[𝑘]ΠΣΠ[𝛿], but 

could de-randomize. 

Quasipolynomial time hitting set of Σ[𝑘]ΠΣΠ[𝛿], for 

any constant 𝑘 and 𝛿.

Dutta, D., Saxena 2021
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Conclusion
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Conclusion

Explicitness

Circuit 
Factoring

Identity 
Testing

De-bordered Σ[𝑘]Π[𝑑]Σ ∧ using DiDIL. And presentable 

border class VNP𝜀 is explicit over finite fields.

Factor closure of VNP over finite fields. And de-

bordering low-degree factors of small size circuits.

White-box identity testing of Σ[𝑘]Π[𝑑]Σ ∧ and border PIT 

of Σ[𝑘]ΠΣ ∧ and Σ[𝑘]ΠΣΠ[𝛿].
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Conclusion

Explicitness

Circuit 
Factoring

Identity 
Testing
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Treading the Borders



Open Problems

Improve De-bordering upper bounds. Investigate the 

extent of de-bordering that is possible with 

presentability.

De-bordering helped in circuit factoring and identity 

testing. There could be hidden direct connections 

between the problems.

Solve Valiant’s conjecture and PIT completely. It’s high 

time now!
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